Skip to main content
Log in

Influence of Stress on Creep Behavior of Ni60Zr40 Glass-Reinforced Ni Nanocomposite Investigated by Atomistic Simulations

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this present study, molecular dynamics simulations of creep deformation at 1200 K temperature and different stresses have been performed to study the influence of stress on the creep behavior of Ni60Zr40 glass-reinforced nanocrystalline (NC) Ni nanocomposite using embedded atom method potential. Adaptive common neighbor analysis, centro-symmetry parameter estimation, Voronoi polyhedra, atomic trajectory and radial distribution functions are implemented to present structural evolution during creep process, thereby providing an insight into the underlying mechanism. The specimen is observed to undergo substantial amorphization with the progress of creep deformation owing to stress-induced diffusion of Zr atoms to NC Ni through the Ni60Zr40 glass–NC Ni interface and thickening of grain boundaries, which eventually causes a negative creep phenomenon at the later stage of tertiary creep regime. Calculated stress exponent for Ni60Zr40 glass-reinforced nanocrystalline (NC) Ni nanocomposite is equal to 0.64.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu P, Kim K B, Das J, Baier F, Xu W, and Eckert J, Scr Mater 54 (2006) 1445.

    Article  CAS  Google Scholar 

  2. Lee M H, Kim J H, Park J S, Kim J C, Kim W T, and Kim D H, Scr Mater 50 (2004) 1367.

    Article  CAS  Google Scholar 

  3. Rams J, Campo M, and Ureña A, J Mater Res 19 (2004) 2109.

    Article  CAS  Google Scholar 

  4. Wang Z, Tan J, Sun B A, Scudino S, Prashanth K G, Zhang W W, Li Y Y, and Eckert J, Mater Sci Eng A 600 (2014) 53.

    Article  CAS  Google Scholar 

  5. Markó D, Prashanth K G, Scudino S, Wang Z, Ellendt N, Uhlenwinkel V, and Eckert J, J Alloys Compd 615 (2014) S382.

  6. Wang Z, Tan J, Scudino S, Sun B A, Qu R T, He J, Prashanth K G, Zhang W W, Li Y Y, and Eckert J, Adv Powder Technol 25 (2014) 635.

    Article  CAS  Google Scholar 

  7. Dudina D V, Georgarakis K, Aljerf M, Li Y, Braccini M, Yavari A R, and Inoue A, Compos Part A 41 (2010) 1551.

    Article  CAS  Google Scholar 

  8. Wang Z, Prashanth K G, Scudino S, Chaubey A K, Sordelet D J, Zhang W W, Li Y Y, and Eckert J, J Alloys Compd 586 (2014) S419.

    Article  CAS  Google Scholar 

  9. Deng J, Wang D L, Kong Q P, and Shui J P, Scr Mater 32 (1995) 349.

    Article  CAS  Google Scholar 

  10. Mohamed F A, and Chauhan M, Metall Mater Trans A 37 (2006) 3555.

    Article  Google Scholar 

  11. Schuh C A, Nieh T G, and Iwasaki H, Acta Mater 51 (2003) 431.

    Article  CAS  Google Scholar 

  12. Wang Y M, Hamza A V, and Ma E, Acta Mater 54 (2006) 2715.

    Article  CAS  Google Scholar 

  13. Zhang K, Weertman J R, and Eastman J A, Appl Phys Lett 85 (2004) 5197.

    Article  CAS  Google Scholar 

  14. Karanjgaokar N, and Chasiotis I, J Mater Sci 51 (2016) 3701.

    Article  CAS  Google Scholar 

  15. Yamakov V, Wolf D, Phillpot S R, and Gleiter H, Acta Mater 50 (2002) 61.

    Article  CAS  Google Scholar 

  16. Jiao S, and Kulkarni Y, Comput Mater Sci 110 (2015) 254.

    Article  CAS  Google Scholar 

  17. Haslam A J, Moldovan D, Yamakov V, Wolf D, Phillpot S R, and Gleiter H, Acta Mater 51 (2003) 2097.

    Article  CAS  Google Scholar 

  18. Meraj M, and Pal S, Metall Res Technol 114 (2017) 107.

    Article  Google Scholar 

  19. Meraj M, and Pal S, Appl Phys A Mater Sci Process 123 (2017) 138.

    Article  CAS  Google Scholar 

  20. Meraj M, and Pal S, Trans Indian Inst Met 69 (2016) 277.

    Article  Google Scholar 

  21. Bhatia M A, Mathaudhu S N, and Solanki K N, Acta Mater 99 (2015) 382.

    Article  CAS  Google Scholar 

  22. Schäfer J, Ashkenazy Y, Albe K, and Averback R S, Mater Sci Eng A 546 (2012) 307.

  23. Haslam A J, Yamakov V, Moldovan D, Wolf D, Phillpot S R, and Gleiter H, Acta Mater 52 (2004) 1971.

    Article  CAS  Google Scholar 

  24. Hu L Y H T, Zhang G Q, and Jiang J Z, J Alloys Compd 443 (2007) 109.

    Article  CAS  Google Scholar 

  25. Chen D, Comput Mater Sci 3 (1995) 327.

    Article  CAS  Google Scholar 

  26. J Li, Modell Simul Mater Sci Eng 11 (2003) 173.

    Article  Google Scholar 

  27. S Nosé, J Chem Phys 81 (1984) 511.

    Article  Google Scholar 

  28. Hoover W G, Phys Rev A 31 (1985) 1695.

    Article  CAS  Google Scholar 

  29. Berendsen H J, van Postma J P M, van Gunsteren W F, DiNola A R H J, and Haak J R, J Chem Phys 81 (1984) 3684.

    Article  CAS  Google Scholar 

  30. Wilson S R, and Mendelev M I, Philos Mag 95 (2015) 224.

    Article  CAS  Google Scholar 

  31. Stukowski A, Modell Simul Mater Sci Eng 18 (2009) 015012.

    Article  Google Scholar 

  32. Clarke A S, and Jónsson H, Phys Rev E 47 (1993) 3975.

  33. Stukowski A, Modell Simul Mater Sci Eng 20 (2012) 045021.

    Article  CAS  Google Scholar 

  34. Pal S, and Meraj M, Mater Des 108 (2016) 168.

    Article  CAS  Google Scholar 

  35. Pal S, Meraj M, and Deng C, Comput Mater Sci 126 (2017) 382.

    Article  CAS  Google Scholar 

  36. M Meraj, and Pal S, J Mol Model 23 (2017) 309.

  37. Kelchner C L, Plimpton S J, and Hamilton J C, Phys Rev B Condens Matter 58 (1998) 11085.

    Article  CAS  Google Scholar 

  38. Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, and Sha Z D, Mater Des 77 (2015) 1.

    Article  CAS  Google Scholar 

  39. Zhou X W, Zimmerman J A, Reedy E D Jr, and Moody N R, Mech Mater 40 (2008) 832.

    Article  Google Scholar 

  40. Gollapudi S, Rajulapati K V, Charit I, Koch C C, Scattergood R O, and Murty K L, Mater Sci Eng A 527 (2010) 5773.

    Article  CAS  Google Scholar 

  41. Zhang J S, High Temperature Deformation and Fracture of Materials. Woodhead Publishing, New Delhi (2010).

    Book  Google Scholar 

  42. Petegem S V, Brandstetter S S, Van Swygenhoven H, and Martin J L, Appl Phys Lett 89 (2006) 073102.

    Article  CAS  Google Scholar 

  43. Choi I C, Kim Y J, Seok M Y, Yoo B G, Kim J Y, Wang Y, and Jang J I, Int J Plast 41 (2013) 53.

    Article  CAS  Google Scholar 

  44. Dieter G E, and Bacon D J, Mechanical Metallurgy (Vol. 3). McGraw-Hill, New York (1986).

  45. Kassner M E, Fundamentals of Creep in Metals and Alloys. Butterworth-Heinemann, Oxford (2015).

    Google Scholar 

  46. Lee J A, Seo B B, Choi I C, Seok M Y, Zhao Y, Jahed Z, Ramamurty U, Tsui T Y, and Jang J I, Scr Mater 112 (2016) 79.

    Article  CAS  Google Scholar 

  47. Mahmudi R, Rezaee-Bazzaz A, and Banaie-Fard H R, J Alloys Compd 429 (2007) 192.

    Article  CAS  Google Scholar 

  48. Meraj M, Yedla N, and Pal S, Mater Lett 169 (2016) 265.

    Article  CAS  Google Scholar 

  49. Meraj M, Deng C, and Pal S, J Appl Phys 123 (2018) 044306. https://doi.org/10.1063/1.5012960.

    Article  CAS  Google Scholar 

  50. Li F, Liu X J, Hou H Y, Chen G, Chen G L, and Li M, Intermetallics 17 (2009) 98.

    Article  CAS  Google Scholar 

  51. Kassner M E, Smith K, and Eliasson V, J Mater Res Technol 4 (2015) 100.

    Article  CAS  Google Scholar 

  52. Gleiter H, Prog Mater Sci 33 (1991) 223.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Computer Centre of National Institute of Technology Rourkela for providing the high-performance computing facility (HPCF) required for carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Meraj, M., Mishra, S. et al. Influence of Stress on Creep Behavior of Ni60Zr40 Glass-Reinforced Ni Nanocomposite Investigated by Atomistic Simulations. Trans Indian Inst Met 72, 2783–2791 (2019). https://doi.org/10.1007/s12666-019-01755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01755-4

Keywords

Navigation