Skip to main content
Log in

Friction Welding of Electron Beam Melted γ-TiAl Alloy Ti–48Al–2Cr–2Nb

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the current work, rotary friction welding of electron beam melted (EBM) γ-TiAl alloy Ti–48Al–2Cr–2Nb (at%) was investigated. Welding experiments were conducted using cylindrical bars of 12 mm diameter and 70 mm height in as-fabricated and heat treated (1275 °C/2 h/furnace cooling) conditions. No cracking problems were encountered during friction welding of as-fabricated EBM samples. However, in as-welded condition, the joints did not perform well in tensile tests and failures were observed to invariably occur at the weld interface. Friction welded joints produced in heat treated EBM samples were also found to suffer from the same problem. In both the cases, the weld region showed fine, fully lamellar γ + α2 microstructure and relatively high hardness. In order to overcome the problem, a post-weld heat treatment (PWHT) was carried out at 1275 °C/2 h/furnace cooling. After the PWHT, the weld region showed a more desirable duplex microstructure consisting of equiaxed primary γ and relatively coarser lamellar γ + α2. The PWHTed joints showed satisfactory tensile properties, and no failures were observed at the weld interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Djanarthany S, Viala J C, Bouix J, Mater Chem Phys 72 (2001) 301.

    Article  Google Scholar 

  2. Srivastava D, Chang I T H, Loretto M H, Mater Des 21 (2000) 425.

    Article  Google Scholar 

  3. Liu W, DuPont J N, Metall Mater Trans A 35a (2004) 1133.

  4. Qu H P and Wang H M, Mater Sci Eng A 466 (2007) 187.

    Article  Google Scholar 

  5. Sharman A R C, Hughes J I, Ridgway K, Intermetallics, 93 (2018) 89.

    Article  Google Scholar 

  6. Löber L, Schimansky F P, Kühn U, Pyczak F, Eckert J, J Mater Process Techno 214 (2014) 1852.

    Article  Google Scholar 

  7. Gussone J, Hagedorn Y C, Gherekhloo H, Kasperovich G, Merzouk T, Hausmann J, Intermetallics 66 (2015) 133.

    Article  Google Scholar 

  8. Thomas M, Malot T, Aubry P, Colin C, Vilaro T, Bertrand P, Mater High Temp 33 (2016) 571.

    Article  Google Scholar 

  9. Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Medina F, Collins S, Wicker R B Acta Mater 58 (2010) 1887.

    Article  Google Scholar 

  10. Biamino S, Penna A, Ackelid U, Sabbadini S, Tassa O, Fino P, Pavese M, Gennaro P, Badini C, Intermetallics 19 (2011) 776.

    Article  Google Scholar 

  11. Tang H P, Yang G Y, Jia W P, He W W, Lu S L, Qian M, Mater Sci Eng A 636 (2015) 103.

    Article  Google Scholar 

  12. Baudana G, Biamino S, Klöden B, Kirchner A, Weißgärber T, Kieback B, Pavese M, Ugues D, Fino P, Badini C, Intermetallics 73 (2016) 43.

    Article  Google Scholar 

  13. Mohammad A, Alahmari A M, Mohammed M K, Renganayagalu R K, Moiduddin K Materials 10 (2017) 211.

    Article  Google Scholar 

  14. Todai M, Nakano T, Liu T, Yasuda H Y, Hagihara K, Cho K, Ueda M, Takeyama M, Addit Manuf 13 (2017) 61.

    Article  Google Scholar 

  15. Gibson I, Stucker B, Rosen D W, Additive Manufacturing Technologies, Springer, New York (2010) p 136.

  16. Hernandez J, Murr L E, Gaytan S M, Martinez E, Medina F, Wicker R B, Metallogr Microstruct Anal. 1 (2012)14.

    Article  Google Scholar 

  17. Baeslack W A, McQuay P A, Lee D S, Fletcher E D, Mater Charact 31 (1993) 197.

    Article  Google Scholar 

  18. Su M, Lang Z, Zheng L, Yan J, Guan K, Zhang H, J Mater Res. 15 (2012) 455.

    Article  Google Scholar 

  19. Cao J, Qi J, Song X, Feng J, Materials, 7 (2014) 4930.

    Article  Google Scholar 

  20. David S A, Horton J A, Goodwin G M, Phillips D H, Reed R W, Weld J Res Suppl (1990) 133s.

    Google Scholar 

  21. Baeslack W A, Joining of Gamma Titanium Aluminides (2003) report (# AFRL-ML-WP-TR-2003-4036).

  22. Ventzke V, Bohm K H, Kocak M, Riekehr S, Horstmann M, Merhof P, Watzlaw M, J Mater Sci Technol 37 (2006) 649.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Sankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, G.S., Karthik, G.M., Mohammad, A. et al. Friction Welding of Electron Beam Melted γ-TiAl Alloy Ti–48Al–2Cr–2Nb. Trans Indian Inst Met 72, 35–46 (2019). https://doi.org/10.1007/s12666-018-1458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1458-x

Keywords

Navigation