Skip to main content
Log in

Friction Stir Processing of Aerospace Aluminum Alloy by Addition of Carbon Nano Tube

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aluminum 7075 is an aerospace alloy that has high strength to weight ratio and used most commonly in aeronautic structures. However, low surface properties such as poor wear resistance and surface hardness are the main weaknesses that limit its application in other areas of manufacturing. In the present work an attempt was made to fabricate aluminum based surface nano-composite reinforced with carbon nano tube (CNT) by means of single pass friction stir processing. Firstly, Microstructural evolution, tensile properties, hardness, wear rate and friction coefficient of fabricated surface composite was compared with pure friction stir processed metal and base material. Hereafter, parametric study based on response surface methodology was carried out to find the effect of tool rotary speed, feed rate and amount of MWCNT on tensile strength and wear rate. Optimization based on desirability approach function was also performed to find optimal parameter setting achieving maximum strength and minimum wear rate, simultaneously. The results revealed that the CNT particles significantly homogenized the microstructure of the composite, enhanced tensile properties and hardness and reduced the wear rate and friction coefficient in sliding test. By performing optimization through RSM, it was found that selection of 1250 RPM tool rotary speed, 40 mm/min feed rate and 0.6 g CNT weight caused 20% improvement in tensile strength and wear rate of fabricated composite when compared with base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tajally M, and Emadoddin E, Mater Des 32 (2011) 1594.

    Article  Google Scholar 

  2. Sharifi E M, Karimzadeh F, and Enayati M H, Mater Des 32 (2011) 3263.

    Article  Google Scholar 

  3. Ramesh C S, Keshavamurthy R, Channabasappa B H, and Ahmed A, Mater Sci Eng A 502 (2009) 99.

    Article  Google Scholar 

  4. Rahimian M, Ehsania N, Parvin N, and Baharvandi H R, J Mater Process Technol 209 (2009) 5387.

    Article  Google Scholar 

  5. Mishra R S, Ma Z Y, and Charit I, Mater Sci Eng A 341 (2003) 307.

    Article  Google Scholar 

  6. Morisada Y, Fujii H, Nagaoka T, and Fukusumi M, Scr Mater 55 (2006) 1067.

    Article  Google Scholar 

  7. Morisada Y, Fujii H, Nagaoka T, and Fukusumi M, Mater Sci Eng A 433 (2006) 50.

    Article  Google Scholar 

  8. Kurt A, Uygur I, and Cete E, J Mater Process Technol 211 (2011) 313.

    Article  Google Scholar 

  9. Sharifitabar M, Sarani A, Khorshahian S, and Afarani M S, Mater Des 32 (2011) 4164.

    Article  Google Scholar 

  10. Gandra J, Miranda R, Vilaca P, Velhinho A, and Teixeira J P, J Mater Process Technol 211 (2011) 1659.

    Article  Google Scholar 

  11. Qu J, Xu H, Feng Z, Frederick D A, An L, and Heinrich H, Wear 271 (2011) 1940.

    Article  Google Scholar 

  12. Raaft M, Mahmoud T S, Zakaria H M, and Khalifa T A, Mater Sci Eng A 528 (2011) 5741.

    Article  Google Scholar 

  13. Dolatkhah A, Golbabaei P, Givi M K B, and Molaiekiya F, Mater Des 37 (2012) 458.

    Article  Google Scholar 

  14. Soleymani S, Zadeh A A, and Alidokht S A, Wear 278–279 (2012) 41.

    Article  Google Scholar 

  15. Moghaddas M A, and Bozorg S F K, Mater Sci Eng A 559 (2013) 187.

    Article  Google Scholar 

  16. Bakshi S R, Lahiri D, and Agarwal A, Int Mater Rev 55 (2010) 41.

    Article  Google Scholar 

  17. Ko´nya Z, Zhu J, Niesz K, Mehn D, and Kiricsi I, Carbon 42 (2004) 2001.

    Article  Google Scholar 

  18. Liu Z Y, Xiao B L, Wang W G, and Ma Z Y, Carbon 62 (2013) 35.

    Article  Google Scholar 

  19. Liu Z Y, Xiao B L, Wang W G, and Ma Z Y, Carbon (2013) (in press).

  20. Hosseini S A, Ranjbar K, Dehmolaei R, and Amrani A R, J Alloys Compd 622 (2015) 725.

    Article  Google Scholar 

  21. Sarmadi H, Kokabi A H, and Seyed Reihani S M, Wear 304 (2013) 1.

    Article  Google Scholar 

  22. Shayan A V, Azar Afza R, and Teimouri R, J Manuf Process (2013). doi:10.1016/j.jmapro.2013.05.001.

    Google Scholar 

  23. George R, Kashyap K T, Rahul R, and Yamdagni S, Scr Mater 53 (2005) 1159.

    Article  Google Scholar 

  24. Olga V F, Scr Mater 38 (1998) 703.

    Article  Google Scholar 

  25. Shafiei Z A, Rashani Bozorg S F, and Zarei H, Mater Sci Eng A 500 (2009) 84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Ebrahimzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzad, P., Ghasempar, M. & Balali, M. Friction Stir Processing of Aerospace Aluminum Alloy by Addition of Carbon Nano Tube. Trans Indian Inst Met 70, 2241–2253 (2017). https://doi.org/10.1007/s12666-017-1062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1062-5

Keywords

Navigation