Skip to main content

Advertisement

Log in

Structural and Optical Properties Correlation of Nickel Doped Magnesium–Titanium Alloys with Sorption Kinetics Reaction for Hydrogen Storage Application

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, synthesis of Ni doped Mg–Ti nanostructured alloys were made using mechanical alloying method. The structural and optical properties of Mg–Ti alloys were studied by X-Ray diffraction (XRD), UV–Vis spectroscopy and Density Functional theoritical (DFT) studies. The electrochemical performance of Mg–Ti alloys was studied by cyclic voltammetry and impedance studies. The XRD pattern of 20 h milled powders revealed the formation of Mg(Ti) solid solution, Mg2Ni and TiNi compounds. DFT studies confirmed the strong modification of the valence band structure of the Ni doped Mg–Ti alloys which could significantly hasten the hydrogenation and dehydrogenation properties. UV–Vis spectrum revealed increase in band gap energy due to blue shift and hyperchromic shift in both absorption and transmission peaks. Obviously, electrochemical studies revealed high exchange current density and Warburg impedance, as well as decrease in diffusion coefficient and charge transfer resistance. Ultimately, it showed the result of high catalytic activity and faster kinetic reaction rates for the good reversibility of hydrogen ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zou J, Long S, Chen X, Zeng X, and Ding W, Int J Hydrogen Energy 40 (2015) 1820.

    Article  Google Scholar 

  2. Makridis S S, Gkanas E I, Panagakos G, Kikkinides E S, Stubos A K, Wagener P, and Barcikowski S, Int J Hydrogen Energy 38 (2013) 11530.

    Article  Google Scholar 

  3. Jain I P, Lal C, and Jain A, Int J Hydrogen Energy 35 (2010) 5133.

    Article  Google Scholar 

  4. Jia Y, Sun C, Shen S, Zou J, Mao S S, and Yao X, Renewable Sustainable Energy Rev 44 (2015) 289.

    Article  Google Scholar 

  5. Wu Z, Zhang Z X, Yang F S, Feng P H, and Wang Y Q, Int J Hydrogen Energy 41 (2016) 2771.

    Article  Google Scholar 

  6. Zou J, Zeng X, Ying Y, Chen X, Guo H, Zhou S, and Ding W, Int J Hydrogen Energy 38 (2013) 2337.

    Article  Google Scholar 

  7. Shaoa H, Xin G, Zheng J, Lib X, and Akibaa E, Nano Energy 1 (2012) 590.

    Article  Google Scholar 

  8. Liu T, Wang C, and Wu Y, Int J Hydrogen Energy 39 (2014) 14262.

    Article  Google Scholar 

  9. Chen B H, Kuo C H, Ku J R, Yan P S, Huang C J, Jeng M S, and Tsau F H, J Alloys Comp 568 (2013) 78.

    Article  Google Scholar 

  10. Yao X, Wu C, Du A, Lu G Q, Cheng H, Smith S C, Zou J, and He Y, J Phys Chem B 110 (2006) 11697.

    Article  Google Scholar 

  11. Long S, Zou J, Chen X, Zeng X, and Ding W, J Alloys Comp 615 (2014) S684.

    Article  Google Scholar 

  12. Suryanarayana C, Prog Mater Sci 46 (2001) 101.

    Article  Google Scholar 

  13. Yuan J, Zhu Y, Li Y, Zhang L, and Li L, Int J Hydrogen Energy 39 (2014) 10184.

    Article  Google Scholar 

  14. Khrussanova M, Grigorova E, Bobet J L, Khristov M, and Peshev P, J Alloys Comp 365 (2004) 308.

    Article  Google Scholar 

  15. Sun N, Xu B, Zhao S, Sun Z, Li X, and Meng L, Int J Hydrogen Energy 40 (2015) 10516.

    Article  Google Scholar 

  16. Zhong H C, Wang H, Ouyang L Z, and Zhu M, J Alloys Comp 509 (2011) 4268.

    Article  Google Scholar 

  17. Yelsukov E P, Dorofeev G A, Ulyanov A L, and Maratkanova A N, Chem Sustainable Development 13 (2005) 191.

    Google Scholar 

  18. Sundaresan R, and Froes F H, Metal Powder Rep 44 (1989) 195.

    Google Scholar 

  19. Oleszak D, Acta Physica Polonica A 96 (1999) 1.

    Article  Google Scholar 

  20. Jurczyk M, Nowak M, Szajek A, and Jezierski A, Int J Hydrogen Energy 37 (2012) 3652.

    Article  Google Scholar 

  21. Gao J, Hou Z, Ge Q, Zhao D, Guo1 S, and Zhang Y, Mater Sci Appl 1 (2010) 168.

    Google Scholar 

  22. Anik M, J Alloys Comp 491 (2010) 565.

    Article  Google Scholar 

  23. Yadav T P, Yadav R M, and Singh D P, Nanosci Nanotechnol 2(3) (2012) 22.

    Article  Google Scholar 

  24. Liang G, J Alloys Comp 370 (2004) 123.

    Article  Google Scholar 

  25. Liang G, and Schulz R, J Metastable Nanocryst Mater 12 (2002) 93.

    Article  Google Scholar 

  26. Liang G, and Schulz R, J Mater Sci 38 (2003) 1179.

    Article  Google Scholar 

  27. Asano K, Enoki H, and Akiba E, Mater Trans 48(2) (2007) 121.

    Article  Google Scholar 

  28. Fukai Y, The Metal Hydrogen System, 2nd ed., Springer, Berlin (2005), p 497.

    Google Scholar 

  29. Niessen R A H, and Notten P H L, Electrochem Solid State Lett 8 (2005) 534.

    Article  Google Scholar 

  30. Kalisvaart W P, and Notten P H L, J Mater Res 23 (2008) 2179.

    Article  Google Scholar 

  31. Asano K, Enoki H, and Akiba E, Mater Trans JIM 48 (2007) 121.

    Article  Google Scholar 

  32. Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, and Jensen T R, Prog Mater Sci 58 (2013) 30.

    Article  Google Scholar 

  33. Li Y, Tao Y, Ke D, Yang S, and Han S, J Alloys Comp 615 (2014) 91.

    Article  Google Scholar 

  34. Liu T, Cao Y, Li H, Chou W, and Li X, J Power Sources 267 (2014) 598.

    Article  Google Scholar 

  35. Al-Gaashani R, Radiman S, Daud A R, Tabet N, and Al-Douri Y, Ceramics International 39 (2013) 2283.

    Article  Google Scholar 

  36. Wang L, Zhao J, He X, Gao J, Li J, Wan C, and Jiang C, Int J Electrochem Sci 7 (2012) 345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaran Sinnaeruvadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthu, P., Sinnaeruvadi, K. Structural and Optical Properties Correlation of Nickel Doped Magnesium–Titanium Alloys with Sorption Kinetics Reaction for Hydrogen Storage Application. Trans Indian Inst Met 70, 581–587 (2017). https://doi.org/10.1007/s12666-017-1057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1057-2

Keywords

Navigation