Skip to main content
Log in

Experimental and Theoretical Studies to Examine the Inhibition Effect of a Schiff Base Against Magnesium Corrosion

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The corrosion inhibition of magnesium by N,N-bis (salicylidene)-2-hydroxy-1, 3-propanediamine Schiff base has been studied in 0.01 M HCl using potentiodynamic polarization and electrochemical noise methods. The polarization curves reveals that the Schiff base used in this study is mixed-type corrosion inhibitor for magnesium and the inhibition efficiency increases as the inhibitor concentration increases. The results obtained by analysis of the electrochemical noise data in frequency domain and those obtained by potentiodynamic polarization measurements are in good agreement. It is found that the Schiff base compound acts by adsorption on the surface and its adsorption follows Fruendlich isotherm. Density function theory calculations shows that stable Mg2(ligand)4+ complex can be formed on the surface due to interaction between the Schiff base ligand and Mg2+ ions. Scanning electron microscope images reveals that the damage of magnesium surface diminishes in the presence of the inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang S, Li Q, Yang X, Zhong X, Dai Y, and Luo F, Mater Character 61 (2010) 269.

    Article  Google Scholar 

  2. Ambat R, and Zhou W, Surf Coat Technol 179 (2004) 124.

    Article  Google Scholar 

  3. El Mahallawy N, Bakkar A, Shoeib M, Palkowski H, and Neubert V, Surf Coat Technol 202 (2008) 5151.

    Article  Google Scholar 

  4. Zhao H, Huang Z, and Cui J, Surf Coat Technol 202 (2007) 133.

    Article  Google Scholar 

  5. Karavaia O V, Bastosa A C, Zheludkevicha M L, Tarybab M G, Lamakab S V, and Fererira M G S, Electrochim Acta 55 (2010) 5401.

    Article  Google Scholar 

  6. Gao H, Li Q, Dai Y, Luo F, and Zhang H X, Corros Sci 52 (2010) 1603.

    Article  Google Scholar 

  7. Gao H, Li Q, Chen F N, Dai Y, Luo F, and Li L Q, Corros Sci 53 (2011) 1401.

    Article  Google Scholar 

  8. Huang D, Hu J, Song G L, and Guo X, Electrochim Acta 56 (2011) 10166.

    Article  Google Scholar 

  9. Issaadi S, Douadi T, Zouaoui A, Chafaa S, Khan M A, and Bouet G, Corros Sci 53 (2011) 1484.

    Article  Google Scholar 

  10. Elsentriecy H H, Azumi K, and Konno H, Surf Coat Technol 202 (2007) 532.

    Article  Google Scholar 

  11. Su H Y, Li W J, and Lin C S, J Electrochem Soc 159 (2012) 219.

    Article  Google Scholar 

  12. Huang Y H, Lee Y L, and Lin C S, J Electrochem Soc 158 (2011) 310.

    Article  Google Scholar 

  13. Seifzadeh D, Basharnavaz H, and Bezaatpour A, Mater Chem Phys 138 (2013) 794.

    Article  Google Scholar 

  14. Thirugnanaselvi S, Kuttirani S, and Emelda A R, Trans Nonferrous Met Soc China 24 (2014) 1969.

    Article  Google Scholar 

  15. Shekaari H, Bezaatpour A, and Elhami R, J Solut Chem 41 (2012) 516.

    Article  Google Scholar 

  16. Granovsky A A, Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html

  17. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, and Montgomery J A, J Comput Chem 14 (1993) 1347.

    Article  Google Scholar 

  18. Becke A D, J Chem Phys 98 (1993) 5648.

    Article  Google Scholar 

  19. Schaefer A, Horn H, and Ahlrichs R, J Chem Phys 97 (1992) 2571.

    Article  Google Scholar 

  20. Schaefer A, Huber C, and Ahlrichs R, J Chem Phys 100 (1994) 5829.

    Article  Google Scholar 

  21. Ashassi-Sorkhabi H, Shaabani B, and Seifzadeh D, Appl Surf Sci 239 (2005) 154.

    Article  Google Scholar 

  22. Solmaz R, Corros Sci 52 (2010) 3321.

    Article  Google Scholar 

  23. Ashassi-Sorkhabi H, and Seifzadeh D, J Appl Electrochem 38 (2008) 1545.

    Article  Google Scholar 

  24. Caridade C G, Isabel M, Pereira S, and Brett C M A, Electrochim Acta 49 (2004) 785.

    Article  Google Scholar 

  25. Girija S, Mudali U K, Khatak H S, and Raj B, Corros Sci 49 (2007) 4051.

    Article  Google Scholar 

  26. Lee C C, and Mansfeld F, Corros Sci 40 (1998) 959.

    Article  Google Scholar 

  27. Hegazy M A, Corros Sci 51 (2009) 2610.

    Article  Google Scholar 

  28. Megahed H E, Port Electrochim Acta 29 (2011) 287.

    Article  Google Scholar 

  29. Lagrrenee M, Mernari B, Bouanis M, Traisnel M, and Bentiss F, Corros Sci 44 (2002) 573.

    Article  Google Scholar 

  30. Canul M A P, and Perez P B, Surf Coat Technol 184 (2004) 133.

    Article  Google Scholar 

  31. McQuarrie D A, Statistical Mechanics, Harper Collins Publishers, New York (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Seifzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifzadeh, D., Bezaatpour, A., Shamkhali, A.N. et al. Experimental and Theoretical Studies to Examine the Inhibition Effect of a Schiff Base Against Magnesium Corrosion. Trans Indian Inst Met 69, 1545–1555 (2016). https://doi.org/10.1007/s12666-015-0728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0728-0

Keywords

Navigation