Skip to main content
Log in

Experimental and Analytical Based Investigations on Machinability of High-Chrome White Cast Iron Using CBN Tools

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

High-chrome white cast iron (HCWCI) is one of the hardest metals used in the process and mining industries faces tough challenge in metal cutting. Focusing on this issue, influence of cutting parameters (e.g., cutting speed, depth of cut, feed rate) on machinability characteristics (e.g., cutting forces, surface roughness, material removal rate, machining power) of HCWCI has been investigated by experimentally and analytically using cubic boron nitride (CBN) cutting tools. Experimentation is carried out in conjunction with the Taguchi techniques and the influence of each cutting parameter of the process has been analyzed by analytical tools; analysis of variance, regression technique and artificial neural networks (ANNs). The study reveals depth of cut has the highest contribution on the cutting forces, and cutting speed on surface roughness and machining power. The confirmation test identifies both regression and ANN techniques are the most effective tools to evaluate machinability characteristics of HCWCI. Further, the CBN cutting tool exhibits excellent performance in machining of HCWCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AISI:

American Iron and Steel Institute

BHN:

Brinell hardness number

CBN:

Cubic boron nitride cutting tool

DF:

Degrees-of-freedom

d :

Depth of cut (mm)

f :

Feed rate (mm/rev)

F :

Statistical characteristics

F c :

Main cutting force (N)

F f :

Feed force (N)

F t :

Thrust force (N)

HRC:

Hardness value by Rockwell

MRR :

Material removal rate (mm3/min)

MS:

Mean of squares

MSE:

Mean square error

P m :

Machining power (kW)

P value:

Percentage of contribution value

R a :

Average surface roughness (µm)

\( R^{2}(\rm adj) \) :

Adjusted coefficient of multiple correlation

S :

Cutting speed (m/min)

SS:

Sum of squares

S/N ratio:

Signal-to-noise ratio

References

  1. Chryssolouris G, Anifantis N, and Karagiannis S, J Manuf Sci Eng Trans ASME 119 (1997) 766.

    Article  Google Scholar 

  2. Kainth G S, and Dey B K, Bull Cercle Etudes Metaux 14 (1998) 22.1.

    Google Scholar 

  3. Lin Z C, and Chen D Y, Int J Mater Process Technol 49 (1995) 149.

    Article  Google Scholar 

  4. Tönshoff H, Arendt C, and Ben Amor R, Ann CIRP Keynote Pap 49 (2000) 547.

    Article  Google Scholar 

  5. Hasan S A, Rizwan A, Why are you still Grinding, Manuf Eng (1998) 76.

  6. Masood S H, Armitage K, and Brandt M, Int J Mach Tools Manuf 51 (2011) 450.

    Article  Google Scholar 

  7. Armitage K, Masood S, and Brandt M, in Proc 9th Int Conf Manufacturing Excellence, Melbourne (2003), p 13.

  8. Mandal N, Doloi B, and Mondal B, Int J Refract Met Hard Mater 29 (2011) 273.

    Article  Google Scholar 

  9. Ng E, Aspinwall D K, The effect of work piece hardness and cutting speed on the machinability of AISI H13 hot work die steel when using PCBN tooling, J Manuf Sci Engg 124 (2002) 588.

  10. Thamizhmanii S, and Hasan S, J Achiev Mater Manuf Eng 31 (2008) 415.

    Google Scholar 

  11. Sahin Y, J Mater Process Technol 209 (2009) 3478.

    Article  Google Scholar 

  12. Huanga Y, Dawsonb T G, Tool crater wear depth modeling in CBN hard turning, Wear 258 (2005) 1455.

  13. Suresh R, Basavarajappa S, and Samuel G L, Int J Meas 45 (2012) 1872.

    Article  Google Scholar 

  14. Poulachon G, Bandopadhyaya B P, Jawahir I S, Pheulpin S, and Seguin E, Int J Wear 256 (2004) 302.

    Article  Google Scholar 

  15. Gopalsamy B M, Mondal B, Ghosh S, Arntz K, and Klocke F, Int J Adv Manuf Technol 51 (2010) 853.

    Article  Google Scholar 

  16. Lajis M A, Amin A K M N, Karim A N M, Radzi H C D M, and Ginta T L, Am J Eng Appl Sci 2 (2009) 421.

    Article  Google Scholar 

  17. Tsao CC, Int J Adv Manuf Technol 36 (2008) 11.

    Article  Google Scholar 

  18. Mandal N, Doloi B, Mondal B, and Das R, Measurements 44 (2011) 2149.

    Google Scholar 

  19. Ghani J A, Choudhury I A, and Hassan H H, J Mater Process Technol 145 (2004) 84.

    Article  Google Scholar 

  20. Assarzadeh S, and Ghoreishi M, Int J Manuf Technol 39 (2008) 488.

    Article  Google Scholar 

  21. Lin J T, Bhattacharyya D, and Kecman V, J Compos Sci Technol 63 (2003) 539.

    Article  Google Scholar 

  22. Yang W H, and Tarng Y S, J Mater Process Technol 84 (1998) 122.

    Article  Google Scholar 

  23. Mantegomery D C, Design and Analysis of Experiments, 7th Edition, Wiley India Edition, New Delhi (2000).

    Google Scholar 

  24. Ross P J, Taguchi Techniques for Quality Engineering, Tata McGraw-Hall Publishing Co. Ltd., New Delhi (1988).

    Google Scholar 

  25. Srinivas C G, Devadasan S R, Sivaram N M, and Karthi S, Int J Logist Econ Glob 4 (2012) 5.

    Google Scholar 

  26. Zhi X, Xing J, Gao Y, Fu H, and Xiao J P B, Int J Mater Sci Eng A 487 (2008) 171.

    Article  Google Scholar 

  27. Mitsubishi Materials Catalogue (C005N) (2011–2012), Mitsubishi Materials Corporation, India.

  28. ASM International, The Material Information Company, ASM Metal Hand Book, Failure Analysis and Prevention, ASM International, The Material Information Company, Materials Park (2002).

    Google Scholar 

  29. Kalpakjian S, and Schmid S R, Manufacturing Engineering Technology, 4th Edition, Pearson Education, Inc., New Delhi (2001).

    Google Scholar 

  30. Gaithonde V N, Karnik S R, Figueira I, and Davim I P, Int J Refract Mater Hard Mater 27 (2009) 754.

    Article  Google Scholar 

  31. Gopalsamy B M, Mondal B, and Ghosh S, J Sci Ind Res 68 (2009) 686.

    Google Scholar 

  32. Liu Z Q, Ai X, Zhang H, Wang Z T, and Wan Y, Int J Mater Process Technol 129 (2002) 222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Murigendrappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, A.M., Murigendrappa, S.M. & Mukunda, P.G. Experimental and Analytical Based Investigations on Machinability of High-Chrome White Cast Iron Using CBN Tools. Trans Indian Inst Met 68, 61–77 (2015). https://doi.org/10.1007/s12666-014-0431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0431-6

Keywords

Navigation