Skip to main content
Log in

Geospatial assessment of landslide-prone areas in the southern part of Anambra State, Nigeria using classical statistical models

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

As global greenhouse gas concentrations intensify climate change impacts, the risk of landslides increases, particularly in Southern Anambra State, Nigeria. This ongoing threat endangers lives, farmlands, and property, emphasizing the need to pinpoint susceptible areas for effective prevention and mitigation strategies. Employing four classical statistical models—frequency ratio (FR), Shannon's entropy (SE), the weight of evidence (WoE), and logistic regression (LR)—this study identified classes within conditioning factors contributing to landslide formation. The research also evaluated and contrasted the accuracy of these models, considering their combined application, which remained unexplored. Using high-resolution spatial data, twelve conditioning factors and landslide inventory datasets, divided into training (80%) and testing (20%), susceptibility maps, accuracy, and errors were generated for all the statistical models. All models exhibited good accuracy, with slightly increased error margins within an acceptable range. Susceptibility maps generated highlighted the central region as highly landslide-prone, influenced by geological factors (poorly consolidated formations), slope (> 12.253°), elevation (212 to 328 m), rainfall (516.4 to 585.3 mm), distance to the stream (< 111.7 to 223.4 m), land cover (crops and rangeland), NDVI (< 0.201), and SPI (> 1.827). Comparison of the obtained statistical results revealed similarities and differences in accuracy and model performance; as inconsistencies exist with previous studies, suggesting that although geospatial characteristics influence landslide susceptibility studies, the controlling factors for landslide formation are not universally exclusive. The insights provided by this paper are valuable for decision-makers involved in hazard monitoring and management efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Addis A (2023) GIS-based landslide susceptibility mapping using frequency ratio and shannon entropy models in Dejen District, Northwestern Ethiopia. J Eng

  • Agterberg FP, Cheng Q (2002) Conditional independence test for weights-of-evidence modeling. Nat Resour Res 11:249–255

    Article  Google Scholar 

  • Aguilera Q, Lombardo L, Tanyas H, Lipani A (2022) On the prediction of landslide occurrences and sizes via Hierarchical Neural Networks. Stoch Environ Res Risk Assess 36:2031–2048. https://doi.org/10.1007/s00477-022-02215-0

    Article  Google Scholar 

  • Aigbadon GO, Ocheli A, Akudo EO (2021) Geotechnical evaluation of gully erosion and landslides materials and their impact in Iguosa and its environs, southern Nigeria. Environ Syst Res 10(1):1–7. https://doi.org/10.1186/s40068-021-00240-6

    Article  Google Scholar 

  • Aigbadon GO, Odoma AN, Obasi IA, Christopher SD, Nanfa CA, Mu’awiya BA, Akakuru OC (2022) Hydrocarbon prospectivity of the southern Bida and northern Anambra basins, Nigeria using palynological and geochemical studies. Geosyst Geoenviron 1(4):100103. https://doi.org/10.1016/j.geogeo.2022.100103

    Article  Google Scholar 

  • Alsabhan A, Singh K, Sharma A, Alam S, Pandey DD, Rahman S, Khursheed A, Munshi F (2021) Landslide susceptibility assessment in the Himalayan range based along Kasauli-Parwanoo road corridor using weight of evidence, information value, and frequency ratio. J King Saud Univ Sci 34:101759

    Article  Google Scholar 

  • Amarasinghe MP, Kulathilaka SAS, Robert DJ, Zhou A, Jayathissa HAG (2023) Risk assessment and management of rainfall-induced landslides in tropical regions: A review. Nat Hazards, 1–53.

  • Anderson-Bell J, Schillaci C, Lipani A (2021) Predicting nonresidential building fire risk using geospatial information and convolutional neural networks. Remote Sens Appl Soc Environ 21:100470

    Google Scholar 

  • Arabameri A, Asadi Nalivan O, Chandra Pal S, Chakrabortty R, Saha A, Lee S, Tien Bui D (2020) Novel machine learning approaches for modelling the gully erosion susceptibility. Remote Sens 12(17):2833. https://doi.org/10.3390/rs12172833

    Article  Google Scholar 

  • Aslam B, Zafar A, Khalil U (2023) Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Nat Hazards 115(1):673–707

    Article  Google Scholar 

  • Asmare D (2023) Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern ethiopia. Sci Afr 19:e01470

    CAS  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalized linear modelling of susceptibility to land sliding in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-Based Logistic Regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Aylin A (2010) Multicollinearity. Wiley Interdisciplinary Reviews. Comput Stat 2:370–374

    Google Scholar 

  • Aziz K, Sarkar S, Sahu P (2024) Comparative analysis of frequency ratio, information value, and analytical hierarchy process statistical models for landslide susceptibility mapping in Kashmir Himalayas. Arab J Geosci 17(1):36

    Article  Google Scholar 

  • Bai S-B, Wang J, Lü G-N, Zhou P-G, Hou S-S, Xu S-N (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115:23–31

    Article  Google Scholar 

  • Baumann V, Bonadonna C, Cuomo S, Moscariello M (2020) Modelling of erosion processes associated with rainfall-triggered lahars following the 2011 Cordon Caulle eruption (Chile). J Volcanol Geotherm Res 390

  • Bednarik M, Magulová B, Matys M, Marschalko M (2009) Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Phys Chem Earth (Parts A/B/C) 35: 162–171

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bewick V, Cheek L, Ball J (2004) Statistics review 13: Receiver operating characteristic curves. Crit Care 8:508. https://doi.org/10.1186/cc3000

    Article  Google Scholar 

  • Bharadwaj D, Sarkar R (2023) Landslide susceptibility mapping using probabilistic frequency ratio and Shannon entropy for Chamoli, Uttarakhand Himalayas. Iran J Sci Technol Transact Civil Eng 1–19.

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists. Pergamon, Ottawa

    Google Scholar 

  • Broeckx J, Vanmaercke M, Duchateau R, Poesen J (2018) A data-based landslide susceptibility map of Africa. Earth Sci Rev 185:102–121

    Article  Google Scholar 

  • Bryce E, Lombardo L, van Westen C, Tanyas H, Castro-Camilo D (2022) Unified landslide hazard assessment using hurdle models: a case study in the Island of Dominica. Stoch Environ Res Risk Assess 36:2071–2084. https://doi.org/10.1007/s00477-022-02239-6

    Article  Google Scholar 

  • Budimir M, Atkinson P, Lewis H (2015) A systematic review of landslide probability mapping using logistic regression. Landslides 12(3):419–436

    Article  Google Scholar 

  • Burt TP, Butcher DP (1986) Development of topographic indices for use in semi-distributed hillslope runoff models, in Geomorphology and Land Management, edited by D. Baltenau and O. Slaymaker. Z Geomorphol Suppl 58:1–19

    Google Scholar 

  • Capitani M, Ribolini A, Bini M (2013) The slope aspect: A predisposing factor for landsliding? CR Geosci 345(11–12):427–438

    Article  Google Scholar 

  • Carranza EJM (2004) Weights of evidence modelling of mineral potential: a case study using small number of prospects, Abra, Philippines. Nat Resour Res 13:173–187

    Article  CAS  Google Scholar 

  • Cellek S (2020) Effect of the slope angle and its classification on landslide, Nat Hazards Earth Syst Sci Discuss [preprint], https://doi.org/10.5194/nhess-2020-87,

  • Cemiloglu A, Zhu L, Mohammednour AB, Azarafza M, Nanehkaran YA (2023) Landslide susceptibility assessment for Maragheh County, Iran, using the logistic regression algorithm. Land 12(7):1397

    Article  Google Scholar 

  • Chai T, Draxler RR (2014) Root means square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chen W, Yang Z (2023) Landslide susceptibility modeling using bivariate statistical-based logistic regression, naïve Bayes, and alternating decision tree models. Bull Eng Geol Env 82(5):190

    Article  Google Scholar 

  • Chen C, Fan L (2023) An attribution deep learning interpretation model for landslide susceptibility mapping in the Three Gorges Reservoir Area. IEEE Transact Geosci Remote Sens.

  • Chen J, Yang ST, Li HW, Zhang B, Lv JR (2013) Research on geographical environment unit division based on the method of natural breaks (Jenks). Int Arch Photogramm Remote Sens Spat Inf Sci 40:47–50

    Article  Google Scholar 

  • Chen XL, Liu CG, Chang ZF, Zhou Q (2016) The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology 253:547–550

    Article  Google Scholar 

  • Chen W, Liu W, Liang H, Jiang M, Dai Z (2023) Response of storm surge and M2 tide to typhoon speeds along coastal Zhejiang Province. Ocean Eng 270:113646. https://doi.org/10.1016/j.oceaneng.2023.113646

    Article  Google Scholar 

  • Chowdhuri I, Pal SC, Arabameri A, Saha A, Chakrabortty R, Blaschke T, Pradhan B, Band S (2020) Implementation of artificial intelligence based ensemble models for gully erosion susceptibility assessment. Remote Sens 12(21):3620

    Article  Google Scholar 

  • Chowdhury MS, Rahaman MN, Sheikh MS, Sayeid MA, Mahmud KH, Hafsa B (2024) GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon, 10(1).

  • Chowdhury MS, Hafsa B (2022) Landslide susceptibility mapping using bivariate statistical models and GIS in chattagram district, Bangladesh. Geotech Geol Eng 40(7):3687–3710

    Article  Google Scholar 

  • Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Cohen I (2009) Pearson correlation coefficient. Noise reduction in speech processing, 1–4.

  • Corominas J, Westen CJ, Frattini P, Cascini L, Jean-Philippe FS, Catani F, Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter M, Pastor M, Ferlisi S, Tofani V, Hervàs J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Costanzo D, Rotigliano E, Irigaray C, Jiménez-Perálvarez JD, Chacón J (2012) Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazard 12(2):327–340

    Article  Google Scholar 

  • Dahigamuwa T, Yu Q, Gunaratne M (2016) Feasibility study of land cover classification based on normalized difference vegetation index for landslide risk assessment. Geosciences 6(4):45

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island. Hong Kong Environ Geol 43(3):381–391

    Google Scholar 

  • Dam ND, Amiri M, Al-Ansari N, Prakash I, Le HV, Nguyen HBT, Pham BT (2022) Evaluation of shannon entropy and weights of evidence models in landslide susceptibility mapping for the pithoragarh district of uttarakhand state, India. Adv Civil Eng 2022.

  • Daoud J (2017) Multicollinearity and regression analysis. J Phys Conf Ser 949:012009

    Article  Google Scholar 

  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17(8):1897–1914

    Article  Google Scholar 

  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Yamagishi H (2020) Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Total Environ 720:137320

    Article  CAS  Google Scholar 

  • Dutta D, Das S, Kundu A, Taj A (2015) Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Model Earth Syst Environ 1:37. https://doi.org/10.1007/s40808-015-0034-1

    Article  Google Scholar 

  • Effiong J, Eni DI, Obiefuna JN, Etu SJ (2021) Geospatial modelling of landslide susceptibility in Cross River State of Nigeria. Sci Afr 14:e01032

    Google Scholar 

  • Egboka BC, Orji AE, Nwankwoala HO (2019) Gully Erosion and landslides in southeastern Nigeria: causes, consequences and control measures. Glob J Eng Sci 2(4):1–11

    Google Scholar 

  • Egboka BCE, Okpoko EI (1984) Gully erosion in the Agulu-Nanka region of Anambra State, Nigeria. Challenges in African hydrology and water resources (proceedings of the Harare symposium, July 1984). IAHS Publication Oxfordshire UK no. 144.

  • Egbueri JC (2021) Use of joint supervised machine learning algorithms in assessing the geotechnical peculiarities of erodible tropical soils from southeastern Nigeria. Geomech Geoengin. https://doi.org/10.1080/17486025.2021.2006803

    Article  Google Scholar 

  • Egbueri JC, Igwe O (2020) The impact of hydrogeomorphological characteristics on gullying processes in erosion-prone geological units in parts of southeast Nigeria. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2020.1711637

    Article  Google Scholar 

  • Egbueri JC, Igwe O (2021) Development of a novel numerical indicator (DLPI) for assessing the detachability and liquefaction potentials of soils from erosion-prone areas. Model Earth Syst Environ 7(4):2407–2429. https://doi.org/10.1007/s40808-020-00999-0

    Article  Google Scholar 

  • Egbueri JC, Igwe O, Unigwe CO (2021) Gully slope distribution characteristics and stability analysis for soil erosion risk ranking in parts of southeastern Nigeria: a case study. Environ Earth Sci. https://doi.org/10.1007/s12665-021-09605-7

    Article  Google Scholar 

  • Egbueri JC, Igwe O, Ifediegwu SI (2022) Erosion risk mapping of Anambra State in southeastern Nigeria: soil loss estimation by RUSLE model and geoinformatics. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-022-02589-z

    Article  Google Scholar 

  • Egbueri JC, Igwe O, Omeka ME, Agbasi JC (2023) Development of MLR and variedly optimized ANN models for forecasting the detachability and liquefaction potential index of erodible soils. Geosyst Geoenviron 2:100104. https://doi.org/10.1016/j.geogeo.2022.100104

    Article  Google Scholar 

  • Emeh C, Igwe O (2017) Variations in soils derived from an erodible sandstone formation and factors controlling their susceptibility to erosion and landslide. J Geol Soc India 90:362–370

    Article  Google Scholar 

  • Emerson RW (2015) Causation and Pearson’s correlation coefficient. J vis Impair Blind 109(3):242–244. https://doi.org/10.1177/0145482X1510900311

    Article  Google Scholar 

  • Es-smairi A, Elmoutchou B, Mir R, Ouazani Touhami A, Namous M (2022) Spatial prediction of landslide susceptibility using Frequency Ration (FR) and Shannon Entropy (SE) models: a case study from northern Rif, Morocco.

  • Es-smairi A, Elmoutchou B, Mir RA, Touhami AEO, Namous M (2023) Delineation of landslide susceptible zones using Frequency Ratio (FR) and Shannon Entropy (SE) models in northern Rif, Morocco. Geosyst Geoenviron 2(4):100195

    Article  Google Scholar 

  • Ezechi JI, Okagbue CO (1989) A genetic classification of gullies in Eastern Nigeria and its implications on control measures. J Afr Earth Sci 9(3–4):711–718

    Article  Google Scholar 

  • Fagbohun BJ, Olabode OF, Adebola AO, Akinluy FO (2017) GIS-based sub-basin scale identification of dominant runoff processes for soil and water management in Anambra area of Nigeria. Contemp Trends Geosci 6(2):80–93

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ et al (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):99–111

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94(3–4):268–289

    Article  Google Scholar 

  • Giaccone E, Oriani F, Tonini M, Lambiel C, Marie´thozG, (2022) Using data-driven algorithms for semi-automated geomorphological mapping. Stoch Environ Res Risk Assess 36:2115–2131. https://doi.org/10.1007/s00477-021-02062-5

    Article  Google Scholar 

  • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129(3–4):376–386

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27

    Article  Google Scholar 

  • Gorsevski P, Jankowski P (2010) An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Comput Geosci 36:1005–1020

    Article  Google Scholar 

  • Guzzetti F, Alberto C et al (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1):181–216

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1–2):42–66

    Article  Google Scholar 

  • Gyawali P, Aryal YM, Tiwari A, Prajwol KC, Ansari K (2021) Landslide susceptibility assessment using bivariate statistical methods: a case study of Gulmi District, western Nepal. VW Engineering International 3(2):29–40

    Google Scholar 

  • Hadji R, Limani Y, Baghem M, Demdoum A (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quatern Int 302:224–237

    Article  Google Scholar 

  • He J, Wang S, Liu H, Nguyen V, Han W (2021) The critical curve for shallow saturated zone in soil slope under rainfall and its prediction for landslide characteristics. Bull Eng Geol Env 80(3):1927–1945. https://doi.org/10.1007/s10064-020-02016-1

    Article  Google Scholar 

  • Hodson TO (2022) Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci Model Dev 15(14):5481–5487

    Article  Google Scholar 

  • Hong H, Liu J, Zhu A-X (2020) Modelling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci Total Environ 718:137231. https://doi.org/10.1016/j.scitotenv.2020.137231

    Article  CAS  Google Scholar 

  • Huang J, Ma H, Sedano F, Lewis P, Liang S, Wu Q, Su W, Zhang X, Zhu D (2019) Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur J Agron 102:1–13. https://doi.org/10.1016/j.eja.2018.10.008

    Article  Google Scholar 

  • Huang F, Chen J, Yao C, Chang Z, Jiang Q, Li S, Guo Z (2020) SUSLE: a slope and seasonal rainfall-based RUSLE model for regional quantitative prediction of soil erosion. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-020-01886-9

    Article  Google Scholar 

  • Huang H, Huang J, Wu Y, Zhuo W, Song J, Li X, Li L, Su W, Ma H, Liang S (2023) The improved winter wheat yield estimation by assimilating GLASS LAI into a crop growth model with the proposed bayesian posterior-based ensemble kalman filter. Ieee Transact Geosci Remote Sens. https://doi.org/10.1109/TGRS.2023.3259742

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  • Ige OO, Oyeleke TA, Baiyegunhi C, Oloniniyi TL, Sigabi L (2016) Liquefaction, landslide and slope stability analyses of soils: a case study of soils from parts of Kwara, Kogi and Anambra states of Nigeria. Nat Hazards Earth Syst Sci Discuss, 1–39

  • Igwe O (2015) The geotechnical characteristics of landslides on the sedimentary and metamorphic terrains of South-East Nigeria, West Africa. Geoenviron Disast 2(1):1–14

    Article  Google Scholar 

  • Igwe O, Egbueri JC (2018) The characteristics and the erodibility potentials of soils from different geologic formations in Anambra State, Southeastern Nigeria. J Geol Soc India 92(4):471–478. https://doi.org/10.1007/s12594-018-1044-1

    Article  Google Scholar 

  • Igwe O, Una CO (2019) Landslide impacts and management in Nanka area, Southeast Nigeria. Geoenviron Dis 6:5. https://doi.org/10.1186/s40677-019-0122-z

    Article  Google Scholar 

  • Islam F, Riaz S, Ghaffar B, Tariq A, Shah SU, Nawaz M, Aslam M (2022) Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate modeling. Front Environ Sci 10:1027423

    Article  Google Scholar 

  • James T, Schillaci C, Lipani A (2021) Convolutional neural networks for water segmentation using sentinel-2 red, green, blue (RGB) composites and derived spectral indices. Int J Remote Sens 42(14):5338–5365

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2015) Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng Geol 192:101–112

    Article  Google Scholar 

  • Kaya Topaçli Z, Ozcan AK, Gokceoglu C (2024) Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the Bolaman Basin, Türkiye. Nat Hazards Rev 25(1):04023054

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Nat Hazards 63:479–498

    Article  Google Scholar 

  • Khalil U, Imtiaz I, Aslam B, Ullah I, Tariq A, Qin S (2022) Comparative analysis of machine learning and multi-criteria decision-making techniques for landslide susceptibility mapping of Muzaffarabad district. Front Environ Sci, 10.

  • Khan A, Shitao Z, Khan G (2022) Comparative analysis and landslide susceptibility mapping of Hunza and Nagar Districts, Pakistan Arabian. J Geosci 15(21):1644

    CAS  Google Scholar 

  • Kumar R, Anbalagan RJ (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri Reservoir Rim Region, Uttarakhand. J Geol Soc India 87:271–286

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Article  CAS  Google Scholar 

  • Lee S, Ryu J-H, Won J-S, Park H-J (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71(3–4):289–302

    Article  Google Scholar 

  • Lee S, Jeon SW, Oh K-Y, Lee M-J (2016) The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a case study of Inje, Korea. Open Geosci 8:117–132

    Google Scholar 

  • Lee J-H, Sameen MI, Pradhan B, Park H-J (2018) Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods. Geomorphology 303:284–298. https://doi.org/10.1016/j.geomorph.2017.12.007

    Article  Google Scholar 

  • Li Y, Hong H (2023) Modelling flood susceptibility based on deep learning coupling with ensemble learning models. J Environ Manage 325:116450

    Article  Google Scholar 

  • Li AG, Yue ZQ, Tham LG, Lee CF, Law KT (2005) Field-monitored variations of soil moisture and matric suction in a saprolite slope. Can Geotech J 42:13–26

    Article  Google Scholar 

  • Li J, Wang Z, Wu X, Xu CY, Guo S, Chen X (2020) Toward monitoring short-term droughts using a novel daily scale, standardized antecedent precipitation evapotranspiration index. J Hydrometeorol 21(5):891–908. https://doi.org/10.1175/JHM-D-19-0298.1

    Article  Google Scholar 

  • Liu Z, Xu J, Liu M, Yin Z, Liu X, Yin L, Zheng W (2023a) Remote sensing and geostatistics in urban water-resource monitoring: a review. Mar Freshw Res 74:747–765. https://doi.org/10.1071/MF22167

    Article  Google Scholar 

  • Liu S, Wang L, Zhang W, He Y, Pijush S (2023b) A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol J 58(6):2283–2301. https://doi.org/10.1002/gj.4666

    Article  Google Scholar 

  • Lombardo L, Tanyas H (2020) Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations. Eng Geol 278:105818

    Article  Google Scholar 

  • Ly A, Marsman M, Wagenmakers E-J (2017) Analytic posteriors for Pearson’s correlation coefficient. Stat Neerl 72(1):4–13. https://doi.org/10.1111/stan.12111

    Article  Google Scholar 

  • Maki-Mateso JC, Bielders CL, Monsieurs E, Depicker A, Smets B, Tambala T, Dewitte O (2023) Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo). Nat Hazards Earth Syst Sci 23(2):643–666

    Article  Google Scholar 

  • Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 5(9):1315–1316. https://doi.org/10.1097/jto.0b013e3181ec173d

    Article  Google Scholar 

  • Mansfield ER, Helms BP (1982) Detecting Multicollinearity. Am Stat 36(3a):158–160. https://doi.org/10.1080/00031305.1982.10482818

    Article  Google Scholar 

  • Marjanovic´ M, Kovacˇevic´ M, Bajat B, Vozˇenı ´lek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234

  • Mathew J, Jha VK, Rawat GS (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi Valley, Uttarakhand”. Curr Sci 92(5):628–638

    Google Scholar 

  • Meena SR, Puliero S, Bhuyan K, Floris M, Catani F (2022) Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy). Nat Hazard 22(4):1395–1417

    Article  Google Scholar 

  • Mehrabi M (2021) Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy. Nat Hazards. https://doi.org/10.1007/s11069-021-05083-z

    Article  Google Scholar 

  • Melese T, Belay T, Andemo A (2022) Application of analytical hierarchical process, frequency ratio, Shannon entropy approachs for landslide susceptibility mapping using geospatial technology: The case of Dejen district,Ethiopia Arab. J Geosci 15:424

    Google Scholar 

  • Menard S (1995) Applied logistic regression analysis. Sage University Paper Series on Quantitative Applications in Social Sciences, vol. 106. Thousand Oaks, California. 98 pp.

  • Miao F, Zhao F, Wu Y et al (2023) Landslide susceptibility mapping in Three Gorges Reservoir area based on GIS and boosting decision tree model. Stoch Environ Res Risk Assess 37:2283–2303. https://doi.org/10.1007/s00477-023-02394-4

    Article  Google Scholar 

  • Mindje R, Li L, Nsengiyumva JB, Mupenzi C, Nyesheja EM, Kayumba PM, Hakorimana E (2020) Landslide susceptibility and influencing factors analysis in Rwanda. Environ Dev Sustain 22:7985–8012

    Article  Google Scholar 

  • Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B (2019) Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comp 35:967–984. https://doi.org/10.1007/s00366-018-0644-0

    Article  Google Scholar 

  • Moayedi H, Canatalay PJ, Ahmadi Dehrashid A, Cifci MA, Salari M, Le BN (2023) Multilayer perceptron and their comparison with two nature-inspired hybrid techniques of biogeography-based optimization (BBO) and Backtracking Search Algorithm (BSA) for Assessment of Landslide Susceptibility. Land 12(1):242. https://doi.org/10.3390/land12010242

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Moragues S, Lenzano MG, Jeanneret P, Gil V, Lannutti E (2024) Landslide susceptibility mapping in the Northern part of Los Glaciares National Park, Southern Patagonia, Argentina using remote sensing, GIS and frequency ratio model. Q Sci Adv 13:100146

    Article  Google Scholar 

  • Mousavi S, Kavian A, Soleimani K, Mousavi S, Shirzadi A (2011) GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat Nat Hazards Risk. https://doi.org/10.1080/19475705.2010.532975

    Article  Google Scholar 

  • Naceur HA, Abdo HG, Igmoullan B, Namous M, Almohamad H, Al Dughairi AA, Al-Mutiry M (2022) Performance assessment of the landslide susceptibility modelling using the support vector machine, radial basis function network, and weight of evidence models in the N’fis river basin, Morocco. Geosci Lett 9(1):1–20

    Article  Google Scholar 

  • Naranjo JL, Van Westen C, Soeters R (1994) Evaluating the use of training areas in bivariate statistical landslide hazard analysis—a case study in Colombia. ITC J 3:292–300

    Google Scholar 

  • Nebeokike UC, Igwe O, Egbueri JC, Ifediegwu SI (2020) Erodibility characteristics and slope stability analysis of geological units prone to erosion in Udi area, southeast Nigeria. Model Earth Syst Environ 6(2):1061–1074. https://doi.org/10.1007/s40808-020-00741-w

    Article  Google Scholar 

  • Neuhäuser B, Terhorst B (2006) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24

    Article  Google Scholar 

  • Nfor BN, Olobaniyi SB, Ogala JE (2007) Extent and distribution of groundwater resources in parts of Anambra State, Southeastern, Nigeria. J Appl Sci Environ Manag 11(2):215–221

    Google Scholar 

  • NGSA (Nigerian Geological Survey Agency) (2006) Geological Map of Nigeria.

  • Nishiguchi Y, Uchida T (2022) Long-runout-landslide-induced debris flow: The role of fine sediment deposition processes in debris flow propagation. J Geophys Res Earth Surf. https://doi.org/10.1029/2021JF006452

    Article  Google Scholar 

  • Nnanwuba UE, Qin S, Adeyeye OA, Cosmas NC, Yao J, Qiao S, Egwuonwu EM (2022) Prediction of spatial likelihood of shallow landslide using GIS-based machine learning in awgu, southeast/Nigeria. Sustainability 14(19):12000

    Article  Google Scholar 

  • Nohani E, Moharrami M, Sharafi S, Khosravi K, Pradhan B, Pham BT, Melesse M (2019) Landslide susceptibility mapping using different GIS-based bivariate models. Water 11(7):1402

    Article  Google Scholar 

  • Nsengiyumva JB, Luo G, Amanambu AC, Mind’je R, Habiyaremye G, Karamage F, Mupenzi C (2019) Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci Total Environ 659:1457–1472

    Article  CAS  Google Scholar 

  • Nwajide CS (2013) Geology of Nigerian’s sedimentary basins. CSS Press, Lagos

    Google Scholar 

  • Nwajide CS (1990) Cretaceous sedimentation and palaeogeography of Central Benue Trough. In C. O. Ofoegbu (Ed.), The Benue Trough Structure and Evolution, Braunchweig/Wiesbaden: Friedr. Viewed and Sohn, 19–38

  • Nwazelibe VE, Unigwe CO, Egbueri JC (2022) Integration and comparison of algorithmic weight of evidence and logistic regression in landslide susceptibility mapping of the Orumba North erosion-prone region Nigeria. Model Earth Syst Environ. https://doi.org/10.1007/s40808-022-01549-6

    Article  Google Scholar 

  • Nwazelibe VE, Unigwe CO, Egbueri JC (2023a) Testing the performances of different fuzzy overlay methods in GIS-based landslide susceptibility mapping of Udi Province SE Nigeria. CATENA 220:106654

    Article  Google Scholar 

  • Nwazelibe VE, Egbueri JC, Unigwe CO et al (2023b) GIS-based landslide susceptibility mapping of Western Rwanda: an integrated artificial neural network, frequency ratio, and Shannon entropy approach. Environ Earth Sci 82:439. https://doi.org/10.1007/s12665-023-11134-4

    Article  Google Scholar 

  • Nwosu US, Archibong GA, Nwangene AS (2022) Geospatial data analysis for flood and erosion characterisation: a case study of Southern Anambra Nigeria. Int J Adv Acad Res 8(3).

  • Ocheli A, Ogbe OB, Aigbadon GO (2021) Geology and geotechnical investigations of part of the Anambra Basin, Southeastern Nigeria: implication for gully erosion hazards. Environ Syst Res 10(1):1–6. https://doi.org/10.1186/s40068-021-00228-2

    Article  Google Scholar 

  • Offodile ME (2014) Hydrogeology: Ground water study and development in Nigeria, 3rd edn. Mecon Geology and Engineering Services Ltd., Nigeria

    Google Scholar 

  • Ogala JE (2012) The geochemistry of lignite from the Neogene Ogwashi-Asaba Formation, Niger Delta basin, southern Nigeria. Earth Sci Res J 16(2):151–164

    Google Scholar 

  • Oh H-J, Kim Y, Choi J-K, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  • Okagbue CO (1992) The 1988 Nanka landslide, Anambra state, Nigeria. Bull Int Assoc Eng Geol 46:79. https://doi.org/10.1007/BF02595037

    Article  Google Scholar 

  • Okoro EI, Egboka BCE, Anike OL, Enekwechi EK (2010) Evaluation of groundwater potentials in parts of the escarpment areas of southeastern, Nigeria. Int J Geomat Geosci 1(3):544–551

    Google Scholar 

  • Omeka ME, Egbueri JC, Unigwe CO, Agbasi JC, Ayejoto DA, Nwazelibe VE (2023) A review on the influence of rainfall in the formation and expansion of gullies in southeastern nigeria. Climate change impacts on Nigeria: environment and sustainable development, 479–503.

  • Onwuka SU, Okoye CO, Nwogbo N (2012) The place of soil characteristics on soil erosion in Nanka and Ekwulobia communities in Anambra State. J Environ Manag Saf 3(3):31–50

    Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197. https://doi.org/10.1016/j.jseaes.2012.12.014

    Article  Google Scholar 

  • Ozioko OH, Igwe O (2020) GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs, Southeast Nigeria. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7951-9

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci. https://doi.org/10.1007/s12665-012-1842-5

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  • Poddar I, Roy R (2023) Application of GIS-Based data-driven bivariate statistical models for Landslide prediction: a case study of highly affected landslide prone areas of Teesta River basin. Q Sci Adv 100150.

  • Porwal A, Carranza EJ, Hale M (2006) A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Nat Resour Res 15:1–14. https://doi.org/10.1007/s11053-006-9012-7

    Article  Google Scholar 

  • Pourghasemi H, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. CATENA 97:71–84. https://doi.org/10.1016/j.catena.2012.05.005

    Article  Google Scholar 

  • Pourghasemi H, Pradhan B, Gokceoglu C (2012b) Remote sensing data derived parameters and its use in landslide susceptibility assessment using Shannon’s entropy and GIS. Appl Mech Mater 225:486–491

    Article  Google Scholar 

  • Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic, and multivariate logistic regression approaches. J Indian Soc Remote Sens 38:301–320

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Oh H-J, Buchroithner M (2010) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat Nat Hazards Risk 1(3):199–223

    Article  Google Scholar 

  • Qazi A, Singh K, Vishwakarma DK et al (2023) GIS based landslide susceptibility zonation mapping using frequency ratio, information value and weight of evidence: a case study in Kinnaur District HP India. Bull Eng Geol Environ 82:332. https://doi.org/10.1007/s10064-023-03344-8

    Article  Google Scholar 

  • Rahaman A, Venkatesan MS, Ayyamperumal R (2021) GIS-based landslide susceptibility mapping method and Shannon entropy model: a case study on Sakaleshapur Taluk, Western Ghats, Karnataka, India. Arab J Geosci 14:2154

    Article  Google Scholar 

  • Ramesh V, Anbazhagan S (2015) Landslide susceptibility assessment along Kohli hills Ghat road section India using frequency ratio, relative effect and fuzzy logic models. Environ Earth Sci 73(12):8009–8021

    Article  Google Scholar 

  • Ran C, Bai X, Tan Q, Luo G, Cao Y, Wu L, Chen F, Li C, Luo X, Liu M, Zhang S (2023) Threat of soil formation rate to health of karst ecosystem. Sci Total Environ 887:163911. https://doi.org/10.1016/j.scitotenv.2023.163911

    Article  CAS  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115:172–187

    Article  Google Scholar 

  • Regmi AD, Devkota KC, Yoshida K et al (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Romer C, Ferentinou M (2016) Shallow landslide susceptibility assessment in a semiarid environment—a Quaternary catchment of KwaZulu-Natal, South Africa. Eng Geol 201:29–44

    Article  Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Rem Sens 23(2):357–369

    Article  Google Scholar 

  • Saha S, Saha A, Santosh M, Kundu B, Sarkar R, Hembram TK (2024) Integrating deep learning neural network and M5P with conventional statistical models for landslide susceptibility modelling. Bull Eng Geol Env 83(1):12

    Article  Google Scholar 

  • Salcedo D, Almeida OP, Morales B, Toulkeridis T (2018) Landslide susceptibility mapping using fuzzy logic and multi-criteria evaluation techniques in the city of Quito, Ecuador. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-2018-86

  • Schillaci C, Perego A, Valkama E et al (2021) New pedo-transfer approaches to predict soil bulk density using wosis soil data and environmental covariates in Mediterranean agro-ecosystems. Sci Total Environ 780:146609

    Article  CAS  Google Scholar 

  • Schober P, Boer C, Schwarte LA (2018) Correlation Coefficients. Anesth Analg 126(5):1763–1768. https://doi.org/10.1213/ane.0000000000002864

    Article  Google Scholar 

  • Schroeder MA, Lander J, Levine-Silverman S (1990) Diagnosing and dealing with multicollinearity. West J Nurs Res 12(2):175–187

    Article  Google Scholar 

  • Shahabi H, Hashim M, Ahmad BB (2015) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4028-0

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Shano L, Raghuvanshi T, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques—a review. Geoenviron Dis 7:18

    Article  Google Scholar 

  • Shao X, Ma S, Xu C, Xu Y (2023) Insight into the Characteristics and Triggers of Loess Landslides during the 2013 Heavy Rainfall Event in the Tianshui Area, China. Remote Sens 15(17):4304

    Article  Google Scholar 

  • Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, Kamaev VAE (2013) A survey of forecast error measures. World Appl Sci J 24(24):171–176

    Google Scholar 

  • Shrestha N (2020) Detecting multicollinearity in regression analysis. Am J Appl Math Stat 8(2):39–42

    Article  Google Scholar 

  • Simpson A (1954) The Nigerian coal field: the geology of parts of Onitsha, Owerri, and Benue provinces. Geol Surv Nigeria Bull 24:85

    Google Scholar 

  • Simpson A (1949) The lignite seams of Asaba Division, Benin Province. Annual Report of Geological Survey of Nigeria, pp. 6–14

  • Singh A, Ashuli A, Dhiman N, Dubey CS, Shukla DP (2023) Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-28966-z

    Article  Google Scholar 

  • Smith HG, Neverman AJ, Betts H, Spiekermann R (2023) The influence of spatial patterns in rainfall on shallow landslides. Geomorphology, 108795.

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (Eds.), Landslide: Investigations and Mitigation. Special Report, vol. 247. Transportation Research Board, National Research Council, National Academy Press, Washington, D.C. pp 129–17

  • Steger S, Mair V, Kofler C, Pittore M, Zebisch M, Schneiderbauer S (2021) Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling: benefits of exploring landslide data collection effects. Sci Total Environ 776:145935

    Article  CAS  Google Scholar 

  • Su¨zen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679

    Article  Google Scholar 

  • De Swardt AMJ, Casey OP (1963) The coal resources of Nigeria. Bull Geol Surv Nigeria. 28

  • Tesfaye B, Jothimani M, Dawit Z (2024) Mapping landslide susceptibility in the Debretabor-Alember road sector, Northwestern Ethiopia through geospatial tools and statistical approaches. J Degrad Min Lands Manag 11(2):5169–5179

    Article  Google Scholar 

  • Tian H, Huang N, Niu Z, Qin Y, Pei J, Wang J (2019) Mapping winter crops in China with multi-source satellite imagery and phenology-based algorithm. Remote Sens (basel, Switzerland) 11(7):820. https://doi.org/10.3390/rs11070820

    Article  Google Scholar 

  • Tian H, Pei J, Huang J, Li X, Wang J, Zhou B, Qin Y, Wang L (2020) Garlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in northern China. Remote Sens (basel, Switzerland) 12(3539):3539. https://doi.org/10.3390/rs12213539

    Article  Google Scholar 

  • Titti G, van Westen C, Borgatti L, Pasuto A, Lombardo L (2021) When enough is really enough? On the minimum number of landslides to build reliable susceptibility models. Geosciences 11(11):469

    Article  Google Scholar 

  • Tong D, Su A, Tan F, Tang J, Yi X (2023) Genetic mechanism of water-rich landslide considering antecedent rainfalls: a case study of Pingyikou landslide in three Gorges reservoir area. J Earth Sci, 1–14.

  • Tsangaratos P, Ilia I (2016) Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models’ complexity and training dataset size. CATENA 145:164–179

    Article  Google Scholar 

  • Tsangaratos P, Ilia I, Hong H, Chen W, Xu C (2017) Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides 14:1091–1111

    Article  Google Scholar 

  • Ulakpa ROE, Okwu VUD, Chukwu KE (2020) An evaluation of the effect of landslide using statistical approach in Nanka, Anambra State. Afr Res J Environ 3(1):37–43

    Google Scholar 

  • Unigwe CO, Egbueri JC, Omeka ME, Ayejoto DA, Agbasi JC, Nwazelibe VE (2023) Landslide Occurrences in Southeastern Nigeria: A Literature Analysis on the Impact of Rainfall. Climate Change Impacts on Nigeria: Environment and Sustainable Development, 339-360.

  • Unigwe CO, Igwe O, Onwuka OS, Egbueri JC, Omeka ME (2022) Roles of hydro-geotechnical and slope stability characteristics in the erosion of Ajali and Nanka geologic formations in southeastern Nigeria. Arab J Geosci 15(18):1492

    Article  Google Scholar 

  • Vakhshoori V, Zare M (2016) Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat Nat Hazards Risk 7(5):1731–1752

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2008) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Varnes DJ, IAEG (1984) Commission on landslide and other mass movements on slopes, 1984. Landslide hazard zonation: A review of principles and practice. The UNESCO Press, Paris, 63p

  • Verstappen HT (1983) Applied geomorphology: geomorphological surveys for environmental development. Number 551.4 VER

  • Wang L-J, Sawada K, Shuji M (2013) Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput Geosci 57:81–92

    Article  Google Scholar 

  • Wang W, Li DQ, Tang XS, Du W (2023a) Seismic fragility and demand hazard analyses for earth slopes incorporating soil property variability. Soil Dyn Earthq Eng 173:108088. https://doi.org/10.1016/j.soildyn.2023.108088

    Article  Google Scholar 

  • Wang K, Liu Y, Li Z, Liu F, Ma C, Chen Y, Liu T (2023b) Rainfall deformation characteristics and influencing factors for a large deep level landslide in tuff grounds in Zhejiang, China. Environ Earth Sci 82(11):279

    Article  Google Scholar 

  • Wei CC (2012) Receiver operating characteristic for diagnosis of wine quality by bayesian network classifiers. Adv Mater Res 591–593:1168–1173. https://doi.org/10.4028/www.scientific.net/amr.591-593.1168

    Article  Google Scholar 

  • Wijesundara NC, Abeysingha NS, Dissanayake DMSLB (2018) GIS-based soil loss estimation using RUSLE model: a case of Kirindi Oya river basin Sri Lanka. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0419-z

    Article  Google Scholar 

  • Willmott C, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30:79–82. https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  • Wilson RC (1925) The geology of the Eastern Railway: Section I, Port-Harcourt to Enugu. Brown coal in Nigeria. Bull Geol Surv Nigeria 8:13–86

    Google Scholar 

  • Wilson RC, Bain AD (1928) The Nigerian Coalfield Section II, Parts of Onitsha and Owerri Provinces. Bull Geol Surv Nigeria 12:12–50

    Google Scholar 

  • Wu X, Guo S, Qian S, Wang Z, Lai C, Li J, Liu P (2022) Long-range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. Int J Climatol 42(15):8024–8039. https://doi.org/10.1002/joc.7690

    Article  Google Scholar 

  • Xi C, Han M, Hu X, Liu B, He K, Luo G, Xichao C (2022) Effectiveness of Newmark based sampling strategy for co-seismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression. Bull Eng Geol Environ 81:208

    Article  Google Scholar 

  • Xia D, Tang H, Sun S, Tang C, Zhang B (2022) Landslide susceptibility mapping based on the germinal center optimization algorithm and support vector classification. Remote Sens 14(11):2707

    Article  Google Scholar 

  • Xie M, Esaki T, Zhou G, Mitani Y (2003) Geographic Information Systems-Based Three-Dimensional Critical Slope Stability Analysis and Landslide Hazard Assessment. J Geotech Geoenviron Eng 129(12):1109–1118. https://doi.org/10.1061/(asce)1090-0241(2003)129:12(1109)

    Article  Google Scholar 

  • Xie X, Xie B, Cheng J, Chu Q, Dooling T (2021) A simple Monte Carlo method for estimating the chance of a cyclone impact. Nat Hazards 107(3):2573–2582. https://doi.org/10.1007/s11069-021-04505-2

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics, and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287

    Article  Google Scholar 

  • Yang Z, Qiao J, Zhang X (2010) Regional Landslide Zonation based on entropy method in Three Gorges Area, China. 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), pp 1336–1339

  • Ye P, Yu B, Chen W, Liu K, Ye L (2022) Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China. Nat Hazards 113(2):965–995

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat - Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Yin H, Wu Q, Yin S, Dong S, Dai Z, Soltanian MR (2023a) Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest. J Hydrol 616:128813. https://doi.org/10.1016/j.jhydrol.2022.128813

    Article  Google Scholar 

  • Yin L, Wang L, Ge L, Tian J, Yin Z, Liu M, Zheng W (2023b) Study on the thermospheric density distribution pattern during geomagnetic activity. Appl Sci. https://doi.org/10.3390/app13095564

    Article  Google Scholar 

  • Yin L, Wang L, Keim BD, Konsoer K, Yin Z, Liu M, Zheng W (2023c) Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol Indicat 154:110837. https://doi.org/10.1016/j.ecolind.2023.110837

    Article  Google Scholar 

  • Yin L, Wang L, Li T, Lu S, Yin Z, Liu X, Li X, Zheng W (2023d) U-Net-STN: a novel end-to-end lake boundary prediction model. Land 12(8):1602. https://doi.org/10.3390/land12081602

    Article  Google Scholar 

  • Yufeng S, Fengxiang J (2009) Landslide stability analysis based on generalized information entropy. 2009 International Conference on Environmental Science and Information Application Technology, pp 83–85

  • Zeng T, Jin B, Glade T, Xie Y, Li Y, Zhu Y, Yin K (2024) Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: a critical inquiry. CATENA 236:107732

    Article  Google Scholar 

  • Zêzere JL, de Brum Ferreira A, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30(1–2):133–146. https://doi.org/10.1016/s0169-555x(99)00050-1

    Article  Google Scholar 

  • Zhang MS, Liu J (2010) Controlling factors of loess landslides in western China. Environ Earth Sci 59:1671–1680

    Article  Google Scholar 

  • Zhang K, Wang S, Bao H, Zhao X (2019) Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Nat Hazard 19(1):93–105

    Article  CAS  Google Scholar 

  • Zhang Y-X, Lan H, Li L, Wu Y-M, Chen J-H, Tian N-M (2020) Optimizing the frequency ratio method for landslide susceptibility assessment: a case study of the Caiyuan Basin in the southeast mountainous area of China. J Mount Sci 17:340–357. https://doi.org/10.1007/s11629-019-5702-6

    Article  Google Scholar 

  • Zhang H, Song Y, Xu S, He Y, Li Z, Yu X, Liang Y, Wu W, Wang Y (2022) Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: a case study of Wanzhou section of the Three Gorges Reservoir, China. Comput Geosci 158:104966

    Article  Google Scholar 

  • Zou KH, O’Malley AJ, Mauri L (2007) Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115(5):654–657. https://doi.org/10.1161/circulationaha.105.594929

    Article  Google Scholar 

Download references

Acknowledgements

The assistance received from Johnson C. Agbasi during the manuscript preparation is greatly appreciated by the authors.

Funding

The present work did not receive any external financial assistance from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to the design, writing, reviewing, revising and editing of the manuscript. Both authors approved the final version.

Corresponding author

Correspondence to Johnbosco C. Egbueri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwazelibe, V.E., Egbueri, J.C. Geospatial assessment of landslide-prone areas in the southern part of Anambra State, Nigeria using classical statistical models. Environ Earth Sci 83, 220 (2024). https://doi.org/10.1007/s12665-024-11533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11533-1

Keywords

Navigation