Skip to main content

Advertisement

Log in

Multidisciplinary non-invasive investigations to develop a hydrogeological conceptual model supporting slope kinematics at Fontana Cornia landslide, Northern Apennines, Italy

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A multidisciplinary approach focusing on the integration of diverse and non-invasive investigations is presented to define the hydrogeological conceptual model of the complex Fontana Cornia landslide in the Northern Apennines, Italy. The results of seismic refraction tomography and electrical resistivity tomography investigations indicate that the landslide has a curvilinear sliding surface dividing the shallow calcarenite debris layer from the deeper pelitic bedrock. The surface presents undulations in which water can be stored and supports the application of the fill and spill hypothesis that is seldom used in landslide studies. The joint interpretation of the geophysical outcomes and of the hydrogeological and hydro-chemical analyses of a spring located on the slope allows the definition of the landslide hydrogeological conceptual model. Four specific hydrologic stages with different groundwater flows though the landslide body were identified. The developed hydrogeological model may explain the displacements of the landslide that were detected with In-SAR monitoring. The isotopes analyses, the displacement monitoring, and the hydrogeological measurements confirm that periods with significant precipitations and snowmelt can cause an increase in landslide saturation that in turn triggers larger displacements. Conversely, the landslide slowly moves at a steady rate during periods with limited recharge water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aguzzoli A, Zanzi L, Arosio D (2021) Seismic noise azimuthal spectral ratios to monitor landslide kinematics. In 27th European Meeting of Environmental and Engineering Geophysics, Aug 2021, Volume 2021, p.1 – 5. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.202120213

  • Arosio D, Corsini A, Giusti R, Zanzi L (2017) Seismic noise measurements on unstable rock blocks: the case of bismantova rock cliff. In: Advancing culture of living with landslides. https://doi.org/10.1007/978-3-319-53487-9_37

  • Arosio D, Longoni L, Papini M, Bièvre G, Zanzi L (2019) Geological and geophysical investigations to analyse a lateral spreading phenomenon: the case study of Torrioni di Rialba, northern Italy. Landslides 16(7):1257–1271. https://doi.org/10.1007/s10346-019-01176-w

    Article  Google Scholar 

  • Bayer B, Simoni A, Mulas M, Corsini A, Schmidt D (2018) Deformation responses of slow-moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology 308:293–306. https://doi.org/10.1016/j.geomorph.2018.02.020

    Article  Google Scholar 

  • Berman ESF, Gupta M, Gabrielli C, Garland T, McDonnell JJ (2009) High-frequency field-deployable isotope analyzer for hydrological applications. Water Resour Res 45:1–7. https://doi.org/10.1029/2009WR008265

    Article  Google Scholar 

  • Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht, pp 129–156. https://doi.org/10.1007/1-4020-3102-5_5

    Chapter  Google Scholar 

  • Birk S, Liedl R, Sauter M (2004) Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286:179–193. https://doi.org/10.1016/j.jhydrol.2003.09.007

    Article  Google Scholar 

  • Bogaard TA, Greco R (2016) Landslide hydrology: from hydrology to pore pressure. Wiley Interdiscip Rev Water 3:439–459. https://doi.org/10.1002/wat2.1126

    Article  Google Scholar 

  • Borgatti L, Tosatti G (2010) Slope Instability Processes Affecting the Pietra Di Bismantova Geosite (Northern Apennines, Italy). Geoheritage 2:155–168. https://doi.org/10.1007/s12371-010-0023-8

    Article  Google Scholar 

  • Brkić Ž, Kuhta M, Hunjak T (2018) Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: insights from spring discharge and water isotopes. CATENA. https://doi.org/10.1016/j.catena.2017.10.011

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Soukatchoff VM, Mudry J, Bertrand C, Charmoille A (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapière landslide (Southern Alps, France). J Hydrol. https://doi.org/10.1016/j.jhydrol.2003.12.013

    Article  Google Scholar 

  • Conti S, Tosatti G (1994) Caratteristiche geologico-strutturali della Pietra di Bismantova e fenomeni franosi connessi. Quad Geol Appl 1:25–43

    Google Scholar 

  • Corsini A, Bonacini F, Mulas M, Ronchetti F, Monni A, Pignone S, Primerano S, Bertolini G, Caputo G, Truffelli G, Benini A, Berti M (2015a) A portable continuous GPS array used as rapid deployment monitoring system during landslide emergencies in Emilia Romagna. Rendiconti Online Societa Geologica Italiana 35:89–91. https://doi.org/10.3301/ROL.2015.71

    Article  Google Scholar 

  • Corsini A, Bonacini F, Mulas M, Petitta M, Ronchetti F, Truffelli G (2015b) Long-term continuous monitoring of a deep-seated compound rock slide in the Northern Apennines (Italy), Engineering Geology for Society and Territory—volume 2: landslide processes. https://doi.org/10.1007/978-3-319-09057-3_235

  • Corsini A, Bonacini F, Deiana M, Giusti R (2016) A wireless crackmeters network for the analysis of rock falls at the Pietra di Bismantova natural heritage site (Northern Apennines, Italy) A wireless crackmeters network for the analysis of rock falls at the Pietra di Bismantova natural heritage site. https://doi.org/10.1201/b21520-78

  • Deiana M, Cervi F, Bertrand C, Ronchetti F (2016) Hydrogeological investigation of Pietra di Bismantova slab and surrounding slope deposits (northern Apennines, Italy). Rend Online Soc Geol It 41:135–138. https://doi.org/10.3301/ROL.2016.112

    Article  Google Scholar 

  • Deiana M, Mussi M, Ronchetti F (2017) Discharge and environmental isotope behaviours of adjacent fractured and porous aquifers. Environ Earth Sci. https://doi.org/10.1007/s12665-017-6897-x

    Article  Google Scholar 

  • Deiana M, Cervi F, Pennisi M, Mussi M, Bertrand C, Tazioli A, Corsini A, Ronchetti F (2018) Chemical and isotopic investigations (δ 18 O, δ 2 H, 3 H, 87 Sr/86 Sr) to define groundwater processes occurring in a deep-seated landslide in flysch. Hydrogeol J 26(8):2669–2691

    Article  Google Scholar 

  • Deiana M, Mussi M, Pennisi M, Boccolari M, Corsini A, Ronchetti F (2020) Contribution of water geochemistry and isotopes (δ 18 O, δ 2 H, 3 H, 87 Sr/86 Sr and δ 11 B) to the study of groundwater flow properties and underlying bedrock structures of a deep landslide. Environ Earth Sci 79(1):30

    Article  Google Scholar 

  • Del Gaudio V, Wasowski J, Muscillo S (2013) New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Nat Hazard 13:2075–2087. https://doi.org/10.5194/nhess-13-2075-2013

    Article  Google Scholar 

  • Delgado J, Vicente F, García-Tortosa F, Alfaro P, Estévez A, Lopez-Sanchez JM, Tomás R, Mallorquí JJ (2011) A deep seated compound rotational rock slide and rock survey in SE Spain: structural control and DInSAR monitoring. Geomorphology 129:252–262. https://doi.org/10.1016/j.geomorph.2011.02.019

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(53)90051-9

    Article  Google Scholar 

  • Friedel S (2003) Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophys J Int 153:305–316

    Article  Google Scholar 

  • Gargini A, Vincenzi V, Piccinini L, Zuppi GM, Canuti P (2008) Groundwater flow systems in turbidites of the Northern Apennines (Italy): natural discharge and high speed railway tunnel drainage. Hydrogeol J 16:1577–1599. https://doi.org/10.1007/s10040-008-0352-8

    Article  Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13:263–287. https://doi.org/10.1007/s10040-004-0429-y

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo. Galápagos 112:1–21. https://doi.org/10.1029/2006JB004763

    Article  Google Scholar 

  • Iasio C, Novali F, Corsini A, Mulas M, Branzanti M, Benedetti E, Giannico C, Tamburini A, Mair V (2012) COSMO SkyMed high frequency - high resolution monitoring of an alpine slow landslide, corvara in Badia, Northern Italy. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium; IEEE, 2012; pp. 7577–7580. https://doi.org/10.1109/IGARSS.2012.6351908

  • Ivanov V, Arosio D, Tresoldi G, Hojat A, Zanzi L, Papini M, Longoni L (2020) Investigation on the role of water for the stability of shallow landslides-insights from experimental tests. Water (Switzerland) 12:1203. https://doi.org/10.3390/W12041203

    Article  Google Scholar 

  • Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Geol Fr 178:101–112. https://doi.org/10.2113/gssgfbull.178.2.101

    Article  Google Scholar 

  • Krzeminska DM, Bogaard TA, Van Asch TWJ, Van Beek LPH (2012) A conceptual model of the hydrological influence of fissures on landslide activity. Hydrol Earth Syst Sci 16:1561–1576. https://doi.org/10.5194/hess-16-1561-2012

    Article  Google Scholar 

  • Liu X, Zhao C, Zhang Q, Peng J, Zhu W, Lu Z (2018) Multi-temporal loess landslide inventory mapping with C-, X- and L-band SAR datasets—a case study of heifangtai loess landslides, China. Remote Sens 10:1756. https://doi.org/10.3390/rs10111756

    Article  Google Scholar 

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187. https://doi.org/10.1071/EG03182

    Article  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Longoni L, Arosio D, Scaioni M, Papini M, Zanzi L, Roncella R, Brambilla D (2012) Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass. J Geophys Eng 9:461–472

    Article  Google Scholar 

  • Mainsant G, Larose E, Brnnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J Geophys Res Earth Surf 117:1–12. https://doi.org/10.1029/2011JF002159

    Article  Google Scholar 

  • Maloszewski P, Rauert W, Trimborn P, Herrmann A, Rau R (1992) Isotope hydrological study of mean transit times in an alpine basin (Wimbachtal, Germany). J Hydrol 140:343–360. https://doi.org/10.1016/0022-1694(92)90247-S

    Article  Google Scholar 

  • Marc V, Bertrand C, Malet JP, Carry N, Simler R, Cervi F (2017) Groundwater—surface waters interactions at slope and catchment scales: implications for landsliding in clay-rich slopes. Hydrol Process 31(2):364–381

    Article  Google Scholar 

  • Meric O, Garambois S, Jongmans D, Wathelet M, Chatelain JL, Vengeon JM (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can Geotech J 42:1105–1115. https://doi.org/10.1139/t05-034

    Article  Google Scholar 

  • Mulas M, Marnas M, Ciccarese G, Corsini A (2020) Sinusoidal wave fit indexing of irreversible displace- ments for crackmeters monitoring of rockfall areas: test at Pietra di Bismantova (Northern Apennines, Italy) 231–240. https://doi.org/10.1007/s10346-019-01248-x

  • Papani G, De Nardo MT, Bettelli G, Rio D, Tellini C, Vernia L, Cibin U (2002) Note Illustrative della Carta Geologica d’Italia alla scala 1: 50.000, Foglio 218, Castelnuovo ne’Monti. EL. CA. Firenze, Servizio Geologico d’Italia—Regione Emilia Romagna.

  • Ronchetti F, Piccinini L, Deiana M, Ciccarese G, Vincenzi V, Aguzzoli A, Malavasi G, Fabbri P, Corsini A (2020) Tracer test to assess flow and transport parameters of an earth slide: The Montecagno landslide case study (Italy). Eng Geol 275:105749. https://doi.org/10.1016/j.enggeo.2020.105749

    Article  Google Scholar 

  • Roy A, Apparao A (1971) Depth of investigation in direct current methods. Geophysics 36(5):943–959

    Article  Google Scholar 

  • Rücker C, Günther T, Wagner F (2016) pyGIMLi—an open source python library for inversion and modelling in geophysics. In 78th EAGE Conference and Exhibition 2016, European Association of Geoscientists & Engineers.

  • Sheehan JR, Doll WE, Mandell WA (2005) An evaluation of methods and available software for seismic refraction tomography analysis. J Environ Eng Geophys 10(1):21–34

    Article  Google Scholar 

  • Sidle RC, Greco R, Bogaard T (2019) Overview of landslide hydrology. Water (Switzerland) 11:11–13. https://doi.org/10.3390/w11010148

    Article  Google Scholar 

  • Taruselli M, Aguzzoli A, Zanzi L, Arosio D (2020) Monitoring Ca Lita Landslide by Means of the Ambient Seismic Noise. In 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering, Nov 2020, Volume 2020, p.1 – 5. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.202071088

  • Tazioli A, Conversini P, Peccerillo A (2012) Hydrogeological and geochemical characterisation of the Rock of Orvieto. Environ Earth Sci 66:55–65. https://doi.org/10.1007/s12665-011-1206-6

    Article  Google Scholar 

  • Tazioli A, Cervi F, Doveri M, Mussi M, Deiana M, Ronchetti F (2019) Estimating the isotopic altitude gradient for hydrogeological studies in mountainous areas: are the low-yield springs suitable? Insights from the northern Apennines of Italy. Water 11(9):1764

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167932

    Book  Google Scholar 

  • Thiebes B, Tomelleri E, Mejia-Aguilar A, Rabanser M, Schlögel R, Mulas M, Corsini A (2016) Assessment of the 2006 to 2015 Corvara landslide evolution using a UAV-derived DSM and orthophoto. Landslides and engineered slopes. Experience Theory Practice 3:1897–1902. https://doi.org/10.1201/b21520-237

    Article  Google Scholar 

  • Tommasone FP, De Francesco S, Cuoco E, Verrengia G, Santoro D, Tedesco D (2011) Radon hazard in shallow groundwaters II: dry season fracture drainage and alluvial fan upwelling. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2011.05.039

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, McDonnell JJ (2006) Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour Res 42(2):W02411. https://doi.org/10.1029/2004WR003800

    Article  Google Scholar 

  • Vallet A, Bertrand C, Mudry J, Bogaard T, Fabbri O, Baudement C, Régent B (2015) Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: a case study at the Séchilienne landslide, western Alps (France). Hydrogeol J 23(8):1761–1779

    Article  Google Scholar 

  • Wagner T, Brodazc A, Krainer K, Winkler G (2020) Active rock glaciers as shallow groundwater reservoirs, Austrian Alps. Grundwasser. https://doi.org/10.1007/s00767-020-00455-x

    Article  Google Scholar 

  • Winkler G, Wagner T, Pauritsch M, Birk S, Kellerer-Pirklbauer A, Benischke R, Leis A, Morawetz R, Schreilechner MG, Hergarten S (2016) Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol J 24:937–953. https://doi.org/10.1007/s10040-015-1348-9

    Article  Google Scholar 

  • Zhang Z, Arosio D, Hojat A, Zanzi L (2020) Tomographic experiments for defining the 3D velocity model of an unstable rock slope to support microseismic event interpretation. Geosciences 10(9):327. https://doi.org/10.3390/geosciences10090327

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, DA, MM, GC, BB, GW and FR. The first draft of the manuscript was written by AA and DA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Diego Arosio.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguzzoli, A., Arosio, D., Mulas, M. et al. Multidisciplinary non-invasive investigations to develop a hydrogeological conceptual model supporting slope kinematics at Fontana Cornia landslide, Northern Apennines, Italy. Environ Earth Sci 81, 471 (2022). https://doi.org/10.1007/s12665-022-10613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10613-4

Keywords

Navigation