Skip to main content

Advertisement

Log in

Hydrogeochemical characterization and determination of natural background levels (NBL) in groundwater within the main lithological units in Slovenia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater represents a vast and highly important source of drinking water. As a part of the hydrological cycle, it can only be managed by understanding the components that make up its vulnerability profile. These are referenced with anthropogenic influences related to pressures connected with land use and the ever-increasing conversion of land surface for urban use. The quality of groundwater can be assessed and expressed using a number of different chemical parameters. In this paper, we focus on the analysis of groundwater’s physico-chemical field parameters and the major ions present in Slovenian aquifers. Several statistical methods were applied to outline the relevant criteria involved in determining the groundwater’s natural background. Additionally, a graphical method was applied to evaluate the source of major ions distribution in the groundwater. The most common BRIDGE methodology used to determine background values is based on upper percentile values. It turns out that this methodology might be relevant for chemical parameters mainly affected by geogenic sources, while the “anthropogenic” parameters have to be treated with a different approach e.g., probability plot method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Buser 2010)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam

    Google Scholar 

  • ARSO (2016) Mean Annual Measured Precipitation between 1981 and 2010.  http://www.meteo.si/uploads/probase/www/climate/image/sl/by_variable/precipitation/mean-annual-measured-precipitation_81-10.png. Accessed 8 Dec 2018

  • ARSO (2009) Methodology for groundwater chemical status assessment. http://www.arso.gov.si/vode/podzemne%20vode/Metodologija.pdf. Accessed 9 Dec 2018

  • ARSO (2018) National monitoring of chemical status. http://www.arso.gov.si/vode/podzemne%20vode/. Accessed 20 Dec 2019

  • Banks D, Reimann C, Røyset O, Skarphagen H, Sæther OM (1995) Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters. Appl Geochem 10(1):1–16. https://doi.org/10.1016/0883-2927(94)00046-9

    Article  Google Scholar 

  • Blum A, Wendland F, Kunkel R, Coetsiers M, Van Camp M, Walraevens K, Rossita BG, Berthold G, Fritsche G, Ru¨diger W, Hinsby K, Marandi A, Simonffy Z, Kadunas K, Arustiene J, Griffioen J, Witczak S, Hookey J, Gustafsson J (2006) Natural background levels. State of the art and review of existing methodologies. In: Report to the EU project ‘‘BRIDGE’’ 2006, Deliverable D 10

  • Brenčič M (2009) Water in rocks and sediments. In: Pleničar M, Ogorelec B, Novak M (eds) Geologija Slovenije. Geological survey of Slovenia, Ljubljana, pp 543–552

    Google Scholar 

  • BRIDGE (2007) Background cRiteria for the IDentification of Groundwater Thresholds. http://nfp-at.eionet.europa.eu/irc/ eionet-circle/bridge/info/data/en/index.htm. Accessed 10 Nov 2018

  • Buser S (2010) Geological map of Slovenia at scale 1:250,000. Geological Survey of Slovenia, Ljubljana

    Google Scholar 

  • Cerar S (2016) A spatial model of groundwater chemical composition in Slovenia in GIS environment. Dissertation, University of Ljubljana

  • Cerar S, Urbanc J (2013) Carbonate chemistry and isotope characteristics of groundwater of Ljubljansko Polje and Ljubljansko Barje aquifers in Slovenia. Sci World J 2013:1–11. https://doi.org/10.1155/2013/948394

    Article  Google Scholar 

  • Cerar S, Mezga K, Urbanc J (2016a) Vsebnost hidrogenkarbonata v podzemni vodi = Bicarbonate concentrations in groundwater. In: Novak M, Rman N (eds) Geološki atlas Slovenije = Geological atlas of Slovenia. Geological Survey of Slovenia, Ljubljana, pp 68–69

    Google Scholar 

  • Cerar S, Mezga K, Žibret G, Urbanc J (2016b) Vsebnost nitrata v podzemni vodi v Sloveniji = Nitrate concentrations in Slovenian groundwater. In: Novak M, Rman N (eds) Geološki atlas Slovenije = Geological atlas of Slovenia. Geological Survey of Slovenia, Ljubljana, pp 76–77

    Google Scholar 

  • Cerar S, Mezga K, Žibret G, Urbanc J, Komac M (2018) Comparison of prediction methods for oxygen-18 isotope composition in shallow groundwater. Sci Total Environ 631–632:358–368. https://doi.org/10.1016/j.scitotenv.2018.03.033

    Article  Google Scholar 

  • Cruz JV, Andrade C (2015) Natural background groundwater composition in the Azores archipelago (Portugal): a hydrogeochemical study and threshold value determination. Sci Total Environ 520:127–135. https://doi.org/10.1016/j.scitotenv.2015.03.057

    Article  Google Scholar 

  • De Caro M, Crosta GB, Frattini P (2017) Hydrogeochemical characterization and natural background levels in urbanized areas: Milan Metropolitan area (Northern Italy). J Hydrol 547:455–473. https://doi.org/10.1016/j.jhydrol.2017.02.025

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, p 824

    Google Scholar 

  • Ducci D, Sellerino M (2012) Natural background levels for some ions in groundwater of the Campania region (southern Italy). Environ Earth Sci 67:683–693. https://doi.org/10.1007/s12665-011-1516-8

    Article  Google Scholar 

  • Ducci D, De Melo MTC, Preziosi E, Sellerino M, Parrone D, Ribeiro L (2016) Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci Total Environ 569(570):569–584. https://doi.org/10.1016/j.scitotenv.2016.06.184

    Article  Google Scholar 

  • Edmunds WM, Shand P, Hart P, Ward RS (2003) The natural (baseline) quality of groundwater: a UK pilot study. Sci Total Environ 310(1):25–35. https://doi.org/10.1016/S0048-9697(02)00620-4

    Article  Google Scholar 

  • Habič P (1969) Hidrogeografska rajonizacija krasa v Sloveniji. KRS Jugoslavije 6:79–97 (Zagreb (in Slovene))

    Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, New York, p 522

    Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 2nd edn. US Geological Survey, Washington

    Google Scholar 

  • Hinsby K, Condesso de Melo MT, Dahl M (2008) European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci Total Environ 401:1–20. https://doi.org/10.1016/j.scitotenv.2008.03.018

    Article  Google Scholar 

  • Hunslow AW (1995) Water quality data: analysis and Interpretation. Lewis Publishers, London, p 397

    Google Scholar 

  • Janža M (2015) A decision support system for emergency response to groundwater resource pollution in an urban area (Ljubljana, Slovenia). Environ Earth Sci 73(7):3763–3774. https://doi.org/10.1007/s12665-014-3662-2

    Article  Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. Esri, Redlands

    Google Scholar 

  • Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F (2012) Hydrogeochemistry of Alpine springs from North Slovenia: Insights from stable isotopes. Chem Geol 300–301:40–54

    Article  Google Scholar 

  • Kolahchi Z, Jalali M (2007) Effects of water quality on the leaching of potassium from sandy soil. J Arid Environ 68(4):624–639. https://doi.org/10.1016/j.jaridenv.2006.06.010

    Article  Google Scholar 

  • Komac M (2005) Statistics of the geological map of Slovenia at scale 1: 250,000. Geologija 48(1):117–126

    Article  Google Scholar 

  • Krajnc M, Gacin M, Krsnik P, Sodja E, Kolenc A (2007) Groundwater quality in Slovenia assessed upon the results of national groundwater monitoring. Eur Water 19(20):37–46

    Google Scholar 

  • Kukar N, Pirc S, Šajn R (2003) Experimental geochemical mapping of Slovenia by spring water sampling. RMZ Mater Geoenviron 50:181–184

    Google Scholar 

  • Lettenmaier PD, Hooper RE, Wagoner C, Faris BK (1991) Trends in stream quality in the continental United States, 1978–1987. Water Resour Res 27(3):327–339. https://doi.org/10.1029/90WR02140

    Article  Google Scholar 

  • Lu A, Wang J, Qin X, Wang K, Han P, Zhang S (2012) Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci Total Environ 425:66–74. https://doi.org/10.1016/j.scitotenv.2012.03.003

    Article  Google Scholar 

  • Marandi A, Karro E (2008) Natural background levels and threshold values of monitored parameters in the Cambrian-Vendian groundwater body, Estonia. Environ Geol 54(6):1217–1225

    Article  Google Scholar 

  • Meliker JR, Slotnick MJ, Avruskin GA, Haack SK, Nriagu JO (2008) Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater. Environ Geochem Health 31(1):147–157. https://doi.org/10.1007/s10653-008-9173-x

    Article  Google Scholar 

  • Mezga K (2014) Natural hydrochemical background and dynamics of groundwater in Slovenia: PhD. thesis. Nova Gorica, Slovenia. https://doi.org/10.1201/b17085-7

  • Mezga K, Urbanc J (2014) Groundwater calcium and magnesium content in various lithological types of aquifers in Slovenia. In: Razowska-Jaworek L (ed) Calcium and magnesium in groundwater, occurrence and significance for human health. Taylor & Francis, London, pp 55–78

    Chapter  Google Scholar 

  • Molinari A, Guadagnini L, Marcaccio M, Guadagnini A (2012) Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Sci Total Environ 425:9–19. https://doi.org/10.1016/j.scitotenv.2012.03.015

    Article  Google Scholar 

  • Müller D, Blum A, Hart A, Hookey J, Kunkel R, Scheidleder A, Tomlin C, Wendland F (2006) Final proposal for a methodology to set up groundwater threshold values in Europe. In: Deliverable D18, BRIDGE project, pp 1–63

  • Nieto P, Custodio E, Manzano M (2005) Baseline groundwater quality: a European approach. Environ Sci Policy 8(4):399–409. https://doi.org/10.1016/j.envsci.2005.04.004

    Article  Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, O’kelly DJ (2006) Characterization and identification of Na–Cl sources in ground water. Groundwater 44(2):176–187. https://doi.org/10.1111/j.1745-6584.2005.00127.x

    Article  Google Scholar 

  • Piper AM (1953) A Graphic Procedure in the Geochemical Interpretation of Water Analysis. US Department of the Interior, Geological Survey, Water Resources Division, Ground Water Branch, Washington

    Google Scholar 

  • Pleničar M, Ogorelec B, Novak M (2009) The geology of Slovenia. Geological survey of Slovenia, Ljubljana

    Google Scholar 

  • Prestor J, Janža M, Rikanovič R, Strojan M (2001) Dosegljivost, izkoristljivost in izkoriščenost podzemnih vodonosnikov = Accessibility, exploitability and utilization of underground aquifers. Geological Survey of Slovenia, Ljubljana, p 44 (In Slovene)

    Google Scholar 

  • Prestor J, Janža M, Urbanc J, Meglič P (2005) Delineation of groundwater bodies in Slovenia. In: Poster, workshop on groundwater bodies in Europe and adjacent countries, Berlin, October 25–26

  • Preziosi E, Giuliano G, Vivona R (2010) Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: a methodological case study in Central Italy. Environ Earth Sci 61(5):885–897. https://doi.org/10.1007/s12665-009-0404-y

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing 2015, Vienna, Austria. http://www.Rproject.org. Accessed 4 Oct 2018)

  • Rakovec J, Vrhovec T (2007) Fundamentals of meteorology for scientists and techniques. DMFA, Ljubljana

    Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth: Consequences for the statistical treatment of geochemical and environmental data. Environ Geol. https://doi.org/10.1007/s002549900081

    Article  Google Scholar 

  • Rman N (2014) Analysis of long-term thermal water abstraction and its impact on low-temperature intergranular geothermal aquifers in the Mura-Zala basin, NE Slovenia. Geothermics 51:214–227. https://doi.org/10.1016/j.geothermics.2014.01.011

    Article  Google Scholar 

  • Rman N (2016) Hydrogeochemical and isotopic tracers for identification of seasonal and long-term over-exploitation of the Pleistocene thermal waters. Environ Monit Assess 188(4):242–262. https://doi.org/10.1007/s10661-016-5250-2

    Article  Google Scholar 

  • Rman N, Lapanje A, Prestor J, O’Sullivan MJ (2016) Mitigating depletion of a porous geothermal aquifer in the Pannonian sedimentary basin. Environ Earth Sci 75(8):20. https://doi.org/10.1007/s12665-016-5634-1

    Article  Google Scholar 

  • Ruiz-Pico Á, Cuenca ÁP, Serrano-Agila R, Criollo DM, Leiva-Piedra J, Salazar-Campos J (2019) Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Appl Geochem 104:1–9. https://doi.org/10.1016/j.apgeochem.2019.02.008

    Article  Google Scholar 

  • Sellerino M, Gorte G, Ducci D (2019) Identification of the natural background levels in the Phlaegreanfields groundwater body (Southern Italy). J Geochem Explor 200:181–192. https://doi.org/10.1016/j.gexplo.2019.02.007

    Article  Google Scholar 

  • Serianz L, Rman N, Brenčič M (2020) Hydrogeochemical characterization of a warm spring system in a carbonate mountain range of the Eastern Julian Alps, Slovenia. Water 12(5):1427

    Article  Google Scholar 

  • Shand P, Tyler-Whittle R, Morton M, Simpson E, Lawrence AR, Pacey J, Hargreaves R (2002) Baseline report series 1: the Triassic sandstones of the vale of York. British Geological Survey Commissioned Report, CR/02/102 N; Environment Agency Report, NC/99/74/1

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611. https://doi.org/10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3(2):129–149. https://doi.org/10.1016/0375-6742(74)90030-2

    Article  Google Scholar 

  • Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240:147–186. https://doi.org/10.1016/S0022-1694(00)00340-1

    Article  Google Scholar 

  • Torkar A, Brenčič M, Vreča P (2016) Chemical and isotopic charasteristics of groundwater-dominated Radovna River (NW Slovenia). Environ Earth Sci 75(18):1–18. https://doi.org/10.1007/s12665-016-6104-5

    Article  Google Scholar 

  • Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114. https://doi.org/10.2307/3001913

    Article  Google Scholar 

  • Urresti-Estala B, Carrasco-Cantos F, Vadillo-Perez I, Jimenez-Gavilan P (2013) Determination of background levels on water quality of groundwater bodies: a methodological proposal applied to a Mediterranean River basin (Guadalhorce River, Malaga, southern Spain). J Environ Manag 117:121–130. https://doi.org/10.1016/j.jenvman.2012.11.042

    Article  Google Scholar 

  • Vencelides Z, Hrkal Z, Prchalová H (2010) Determination of the natural background content of metals in ground waters of the Czech Republic. Appl Geochem 25(5):755–762. https://doi.org/10.1016/j.apgeochem.2010.02.008

    Article  Google Scholar 

  • Verbovšek T, Kanduč T (2016) Isotope geochemistry of groundwater from fractured Dolomite aquifers in Central Slovenia. Aquat Geochem 22(2):131–151. https://doi.org/10.1007/s10498-015-9281-z

    Article  Google Scholar 

  • Verbovšek T, Veselič M (2008) Factors influencing the hydraulic properties of wells in dolomite aquifers. Hydrogeol J 16:779–795. https://doi.org/10.1007/s10040-007-0250-5

    Article  Google Scholar 

  • Vižintin G, Ravbar N, Janež J, Koren E, Janež N, Zini L, Treu F, Petrič M (2018) Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy). Sci Total Environ 619(620):214–1225. https://doi.org/10.1016/j.scitotenv.2017.11.017

    Article  Google Scholar 

  • Vončina E, Brodnjak Vončina D, Mirkovič N, Novič M (2007) Chemometric characterization of the quality of groundwaters from different wells in Slovenia. Acta Chim Slov 54:119–125

    Google Scholar 

  • Wendland F, Hannappel S, Kunkel R, Schenk R, Voigt HJ, Wolter R (2005) A procedure to define natural groundwater conditions of groundwater bodies in Germany. Water Sci Technol 51(3–4):249–257

    Article  Google Scholar 

  • Wendland F, Berthold G, Blum A, Elsass P, Fritsche JG, Kunkel R, Wolter R (2008) Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination 1–3:160–168. https://doi.org/10.1016/j.desal.2007.01.240

    Article  Google Scholar 

  • WFD (2000) Directive 2000/60/EC of the European Parlament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy

  • Wickham H, François R, Henry L, Kirill M (2018) Package ‘dplyr’, a grammar of data manipulation. R package version 0.7.6. https://cran.r-project.org/web/packages/dplyr/dplyr.pdf. Accessed 15 July 2018

  • Zupančič B (1998) Precipitation. In: Fridl J, Kladnik D, Orožen Adamič M, Perko D (eds) Geographical Atlas of Slovenia—the country in space and time. DZS, Ljubljana, pp 98–99

    Google Scholar 

Download references

Acknowledgements

The paper was prepared under the PhD Grant 1000-19-0215 at the Geological Survey of Slovenia, financed by the Slovenian Research Agency (ARRS) through research program P1-0020 Groundwater and Geochemistry in the frame of the Young Researchers programme and ERA-NET Co- Fund Action (GeoERA) project HOVER (Hydrogeological processes and Geological settings over Europe controlling dissolved geogenic and anthropogenic elements in groundwater of relevance to human health and the status of dependent ecosystems) financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luka Serianz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serianz, L., Cerar, S. & Šraj, M. Hydrogeochemical characterization and determination of natural background levels (NBL) in groundwater within the main lithological units in Slovenia. Environ Earth Sci 79, 373 (2020). https://doi.org/10.1007/s12665-020-09112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09112-1

Keywords

Navigation