Skip to main content

Advertisement

Log in

Hydrogeochemical mechanisms governing the mineralization and elevated fluoride \(\left( {\text{F}^{ - } } \right)\) contents in Precambrian crystalline aquifer groundwater in central Benin, Western Africa

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the central part of Benin (Western Africa), high fluoride \(\left( {{\text{F}}^{ - } } \right)\) contents have been reported in groundwater from Precambrian crystalline bedrock aquifer which is the main source of drinking water. The hydrogeochemical mechanisms leading to such elevated fluoride concentrations are usually not fully understood. In this context, the objective is to identify the hydrogeochemical processes governing groundwater mineralization and the origin of the high fluoride concentrations. A dataset of 162 groundwater samples was collected from the aquifer consisting of a thin altered bedrock layer (shallow aquifer) and a deep fractured crystalline bedrock (deep aquifer). Geochemical approaches and multivariate statistics have been used to explore the data. Fluoride concentrations vary between 0.00 and 7.19 mg/L in groundwater. Samples collected in the southern part of the investigated area, close to Dassa-Zoumé, show the highest concentrations, with more than 75% greater than the guideline value of 1.5 mg/L. The deep fractured aquifer shows higher concentrations of fluoride than the shallow regolith reservoir. Results reveal that groundwater mineralization is derived mainly from the hydrolysis of silicate minerals, but it is also influenced by anthropogenic effects, particularly in the shallow reservoir. However, fluoride has a geogenic origin, primarily from the weathering of silicate minerals, primarily biotite. \({\text{Ca}}^{2 + }/{\text{Na}}^{ + }\) cation exchanges and \({\text{F}}^{ - }/{\text{OH}}^{ - }\) anion exchanges between groundwater and the rock matrix also occur as minor processes. Saturation of the water with respect to calcite and the precipitation of this mineral, which reduces calcium activity, also favor the release of fluoride from rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adekambi SA (2005) Impact de l’adoption des variétés améliorées de riz sur la scolarisation et la santé des enfants au Bénin: Cas du département des Collines. Mémoire pour l’obtention du diplôme d’Ingénieur Agronome, Université d’Abomey-Calavi

  • Adiaffi B (2008) Apport de la géochimie isotopique, de l’hydrochimie et de la télédétection à la connaissance des aquifères de la zone de contact “socle-bassin sédimentaire” du Sud-est de la Côte d’Ivoire. Thèse de Doctorat, Sciences de la Terre, Université Paris Sud

  • Adissin Glodji CL (2012) La zone de cisaillement de Kandi et le magmatisme associé dans la région de Savalou-Dassa (Bénin): étude structurale, pétrologique et géochronologique Thèse de Doctorat, Université Jean Monnet Saint-Etienne

  • Adissin Glodji CL, Bascou J, Yessoufou S, Ménot R-P, Villaros A (2014) Relationships between deformation and magmatism in the Pan-African Kandi Shear Zone: microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa). J Afr Earth Sci. doi:10.1016/j.jafrearsci.2014.04.012

    Google Scholar 

  • Aicard P (1957) Le Précambrien du Togo et du Nord-Ouest du Dahomey. Bull Dir Fédér Mines et Géol Dakar. 23

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33(1):13–24

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A. A. Balkema Publishers, p 649

  • Bell ME, Largent EJ, Ludwig TG, Muhler JC, Stookey GK (1988) L’approvisionnement de l’homme en Fluor

  • Bigioggero B, Boriani A, Cadoppi P, Sacchi R, Vedogbeton N, Yevidé H (1988) Données préliminaires sur les granites du Bénin Méridional. Rendiconti della società italiana di mineralogia e petrologia 4(1):477–484

    Google Scholar 

  • Bossa AY, Diekkrüger B, Igue AM, Gaiser T (2012) Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma 173(174):61–74

    Article  Google Scholar 

  • Boukari M (1982) Contribution à l’étude hydrogéologique des régions de socle de l’Afrique Intertropicale: l’Hydrogéologie de la région de Dassa-Zoumé (Bénin). Thèse de doctorat de 3ème cycle en Géologie Appliquée, mention Hydrogéologie, Université de Dakar (Sénégal)

  • Bourrié G (2010) Rôle des composés amorphes dans le contrôle de la composition chimique des solutions du sol. Association Française pour l’Etude du Sol

  • Boussari WT (1975) Contribution à l’étude géologique du socle cristallin de la zone mobile Pan-Africaine (Région centrale du Dahomey). Thèse de Doctorat., Faculté des Sciences et des Techniques, Université de Besançon

  • Brindha K, Rajesh R, Murugan R, Elango L (2011) Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environ Monit Assess 172:481–492

    Article  Google Scholar 

  • Chepkoech E (2014) Petrographic analysis in determining the principal sources of fluoride and arsenic and their health implications: case study central rift Kenya. BSC. Geology, University of Nairobi

  • Chilton PJ, Foster SSD (1995) Hydrogeological characterisation and water-supply potential of basement aquifers in Tropical Africa. Hydrogeol J 3(1):36–49

    Article  Google Scholar 

  • Darell KN, Everett AJ (1977) Fluorite solubility equilibria in selected geothermal waters. Geochemica et Cosmochimica 41:175–188

    Article  Google Scholar 

  • Derron M-H (2004) Géochimie des eaux de sources et interaction eau-roche dans les Alpes. Quanterra short course, 08F on 28.03.2004, international independent center of climate change impact on natural risk analysis in mountainous area, p 18

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and applications to contamination. Lewis publishers, Boca Raton, p 221

    Google Scholar 

  • Dey RK, Swain SK, Mishra S, Sharma P, Patnalk T, Singh VK, Dehury BN, Jha U, Patel RK (2012) Hydrogeochemical processes controlling the high fluoride concentration in groundwater: a case study at the Boden block area, Orissa, India. Environ Monit Assess 184:3279–3291

    Article  Google Scholar 

  • Dovonon FCL (2011) Qualité chimique des eaux souterraines dans la commune de Dassa-Zoume (Bénin) : impacts sanitaires des teneurs hors normes en fluorures et essais de traitement à l’os calciné de bovins. Thèse de doctorat, Université d’Abomey-Calavi

  • Dovonon LFC, Soclo HH, Gbaguidi MAN, Youssao A (2011) Utilisation des os calcinés dans la défluoruration des eaux contaminées: détermination expérimentale de la température de calcination et de la granulométrie optimales des os. Int J Biol Chem Sci 5(4):1712–1726

    Google Scholar 

  • Dubroeucq D (1977) Carte pédologique de reconnaissance de la République du Bénin à 1/200.000. Feuille de Savè. Office de la Recherche Scientifique et Technique d’Outre-Mer

  • Edmunds M, Smedley P (2005) Fluoride in natural waters. In: Selinus O et al (eds) Essentials of medical geology, 1st edn. Elsevier

  • Edmunds WM, Shand P, Hart P, Ward RS (2003) The natural (baseline) quality of groundwater: a UK pilot study. Sci Total Environ 310(2003):25–35

    Article  Google Scholar 

  • Elango L, Kannan R (2007) Rock–water interaction and its control on chemical composition of groundwater. Dev Environ Sci, vol 5, ch 11. doi:10.1016/S1474-8177(07)05011-5. ISSN:1474–8177 pp. 229–243

  • Faillat J-P (1986) Aquifères fissurés en zone tropicale humide: structure, hydrodynamique et hydrochimie (Afrique de l’Ouest). Thèse de Doctorat en Sciences, Université des Sciences et de Languedoc, Montpellier (France)

  • Faillat JP, Drogue C (1993) Différenciation hydrochimique de nappes superposées d’altérites et de fissures en socle granitique. Hydrol. Sci. 38(3, 6):215–228

    Article  Google Scholar 

  • Faure P, Volkoff B (1996) Différenciation régionale des couvertures pédologiques et litho-géomorphologie sur socle granito-gneissique du Bénin (Afrique Occidentale). Géosci de Surf 322(IIa):393–400

    Google Scholar 

  • Fawell J, Bailey K, Chilton E, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking-water (World Health Organization (WHO)). Alliance House, 12 Caxton Street, London SW1H0QS, UK. IWA Publishing. 144p

  • Goldich S (1938) A study in rock weathering. J Geol 46(1):17–58

    Article  Google Scholar 

  • Goni J, Greffard J, Leleu M, Monition L (1973) Le fluor dans les eaux de boisson. BRGM, Service Géologique National-France

  • Guihéneuf N, Boisson A, Bour O, Dewandel B, Perrin J, Dausse A, Viossanges M, Chandra S, Ahmed S, Maréchal JC (2014) Groundwater flows in weathered crystalline rocks: impact of piezometric variations and depth-dependent fracture connectivity. J Hydrol 511:320–334

    Article  Google Scholar 

  • Guo Q, Wang Y, Ma T, Ma R (2007) Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor 93:1–12

    Article  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride-containing groundwater in India. Groundwater 13(3):275–281

    Article  Google Scholar 

  • Igue AM, Weller U (2001) Géologie et géomorphologie du Sud Bénin

  • INSAE (2013) Résultats provisoires du 4ème Recensement Général de la Population et de l’l’Habitat (RGPH4). Ministère du Développement, de l’Analyse Economique et de la Prospective (République du Bénin)

  • Josephus Thomas J, Glass HD, White WA, Trandel RM (1977) Fluoride content of clay minerals and argillaceous earth materials. Clays Clay Miner 25:278–284

    Article  Google Scholar 

  • Kamagaté B (2006) Fonctionnement hydrologique et origine des écoulements sur un bassin versant de milieu tropical de socle au Bénin: bassin versant de la Donga (Haute Vallée de l’Ouémé). Thèse de Doctorat, Université Montpellier II

  • Kamagaté B, Gone LD, Doumouya I, Ouattara I, Ouedraogo M, Bamba A, Savane I (2011) Relation nappe-rivière dans le bassin versant du Bandama en milieu de socle fissuré en Côte d’Ivoire: approche couplée hydrochimie—télédétection. Int J Biol Chem Sci 5(1):206–216

    Google Scholar 

  • Kamtchueng BT, Anazawa K, Kusakabe M, Fantong WY, Wirmvem MJ, Ohba T, Ueda A, Tanyileke G, Tiodjio ER, Mvondo JO, Nkamdjou LS, Hell JV (2013) Assessment of shallow groundwater in Lake Nyos catchment (Cameroon, Central-Africa): implications for hydrogeochemical controls and uses. Environ Earth Sci 72:3663–3678

    Article  Google Scholar 

  • Ladouche B, Chery L, Petelet-Giraud E (2004) Contribution à la caractérisation des états de référence géochimique des eaux souterraines. Application de la méthodologie en milieu de socle fracturé (Naizin, Morbihan). Rapport BRGM/RP-53025-FR

  • Langmuir D (1997) Aqueous Environmental Geochemistry. Upper Saddle River, N.J., Prentice Hall, c1997, p 590

  • Marshall WL, Chen CTA (1982) Amorphous silica solubilities V Predictions of solubility behavior in aqueous mixed electrolyte solutions to 300 °C. Geochemica et Cosmochimica acta. 42(2):289–291

    Article  Google Scholar 

  • Mazet P (2002) Les eaux souterraines riches en fluor dans le monde. Mémoire de DEA, Université des Sciences et Technologies Montpellier II/Hydrosciences-Monptellier

  • Oloukoi J, Mama VJ, Agbo FB (2006) Modélisation de la dynamique de l’occupation des terres dans le département des Collines au Bénin. Télédétection 6(4):305–323

    Google Scholar 

  • Pfeifer H-R, Derron M-H, Rey D, Schlegel C, Atteia O, Dalla Piazza R, Dubois J-P, Mandia Y (2000) Natural trace element input to the soil-sediment-water-plant system: examples of background and contaminated situations in Switzerland, Eastern France and Northern Italy. In: Markert B, Friese K (eds) Trace elements—their distribution and effects in the environment. Elsevier Science B.V., pp 33–86

  • Potot C (2011) Etude hydrochimique du système aquifère de la basse vallée du Var: Apport des éléments traces et des isotopes (Sr, Pb, δ18O, 226Ra/228Ra). Doctorat, Université de Nice-Sophia Antipolis

  • Pougnet R (1957) Le Précambrien du Dahomey. Bull Dir Fédér Min Af Occ fr Dakar

  • Ricour J, Landreau A, Ramon S (1977) Répartition du Fluor dans les eaux de quelques aquifères Lorrains. Rapport BRGM, Service Géologique National, Nancy (France), p 29

  • Rodier J, Legube B, Merlet N (2009) L’Analyse De L’Eau - 9e édition entièrement mis à jour. Dunod, p 1600

  • Salifu A, Petrusevski B, Ghebremichael K, Buamah R, Amy G (2012) Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana. J Contam Hydrol 140(141):34–44

    Article  Google Scholar 

  • Saxena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736

    Google Scholar 

  • Schoeller H (1959) Hydrologie des régions arides, progrès récents. Publié en 1959 par l’organisation des Nations Unies pour l’éducation, la science et la culture, place de Fontenoy, Paris-70. Imprimeries Oberthur, p 127

  • Seraphim HR (1948) Some aspects of the geochemistry of fluoride Thèse de Doctorat, Massachusetts Institut of Technology

  • Shahid N, Tahir R, Erum B, Muhammad IB, Amanullah L, Tanzil HU (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 78:1313–1321

    Article  Google Scholar 

  • Shand P, Edmunds WM, Lawrence AR, Smedley PL, Burke S (2007) The natural (baseline) quality of groundwater in England and Wales. British Geological Survey Research Report RR/07/06 and Technical Report NC/99/74/24

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2: influence of geology and weathering environment on the dissolved load. J Geophys Res 88(C14):9671–9688

    Article  Google Scholar 

  • Susheela AK, Keast G (1999) Fluoride in water: an overview. Unicef WATERfront (Issue 13—December 1999). pp 11–13

  • Thivya C, Chidambaram S, Manikandan SSR, Thilagavathi R, Prasanna MV (2015) Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India). Appl Water Sci. doi:10.1007/s13201-015-0312-0

    Google Scholar 

  • Travi Y (1993) Hydrogéologie et hydrochimie des aquifères du sénégal, Hydrogéochimie du fluor dans les eaux souterraines. Thèse de doctorat, Université de Paris-Sud, Centre d’Orsay

  • Travi Y, Chernet T (1998) Fluoride contamination in the Lakes region of the Ethiopian rift: origin, mechanism and evolution. IAEA-TECDOC 1046. pp 95–105

  • Travi Y, Faye A (1991) Fluoride in Paleocene aquifer in Senegal: An example of contamination of a confined aquifer by its roof zone, aggravated by an intensive exploitation. XXIII I.A.H Congress “Aquifer overexploitation”, Canary Islands, Spain. pp 171–174

  • Trompette R (1973) Le Précambrien supérieur et le Paléozoïque inférieur de l’Adrar de Mauritanie (bordure occidentale du bassin de Taoudenni, Afrique de l’Ouest), un exemple de sédimentation de craton: Etude stratigraphique et sédimentologique. Thèse de Doctorat, Université de Provence, Centre de St. Jérôme—Marseille

  • Volkoff B (1976) Notice explicative n°66 (2) de la carte pédologique de reconnaissance de la République Populaire du Bénin à 1/200.000—Feuille d’Abomey (2). ORSTOM

  • World Health Organization—WHO (2008) Guidelines for drinking-water quality. vol 1. World Health Organization

Download references

Acknowledgements

Many thanks to Wallonie Bruxelles International (WBI) for financially supporting the research project: “Renforcement des capacités relatives à l’exploitation des ressources en eau souterraine au Bénin: Diagnostic de leur qualité et impact de leur consommation sur la santé.” We would also like to greatly thank the managers of the Direction Générale de l’Eau (Benin) and particularly Dr. Léonce Dovonon for providing historical data. Many thanks to Prof. Jacques Mudry and to the anonymous reviewers for the remarks and comments that helped to improve the manuscript. Acknowledgements are extended to many other people who helped in the field and in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Yélidji Joël Tossou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tossou, Y.Y.J., Orban, P., Gesels, J. et al. Hydrogeochemical mechanisms governing the mineralization and elevated fluoride \(\left( {\text{F}^{ - } } \right)\) contents in Precambrian crystalline aquifer groundwater in central Benin, Western Africa. Environ Earth Sci 76, 691 (2017). https://doi.org/10.1007/s12665-017-7000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7000-3

Keywords

Navigation