Skip to main content
Log in

Leachate detection via statistical analysis of electrical resistivity and induced polarization data at a waste disposal site (Northern Israel)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Landfill site is an intensely heterogeneous medium, in which application of 2-D geophysical techniques frequently does not enable its accurate examination due to the lack of correlation between different geophysical profiles. The study was aimed to eliminate such difficulty. Hereafter, the leachate detection methodology is presented including 2-D smoothness-constrained inversion of geoelectrical raw data collected in situ, the inverted data normalization and statistical examination. To eradicate influence of high heterogeneity of the landfill body, the generalized statistical model of the entire site was created including the likelihood analysis of the entire normalized data set. Three geoelectrical parameters were involved in the analysis: inversed electrical resistivity, inversed chargeability (IP) and the ratio of inversed chargeability-to-inversed electrical resistivity (IP/Res). The study was combined with the synthetic modeling, the analysis of bulk versus fluid electrical resistivity relationship and test borehole drillings. Such generalized analysis ensures independency of the results from the locality of sampling/measurements. It was shown that leachate detection can be correctly performed utilizing the IP/Res ratio while the anomaly’s likelihood is higher than 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu-Zeid N, Bianchini G, Santarato G, Vaccaro C (2004) Geochemical characterization and geophysical mapping of landfill leachates: the Marozzo canal case study (NE Italy). Environ Geol 45:439–447. doi:10.1007/s00254-003-0895-x

    Article  Google Scholar 

  • Adepelumi AA, Ako BD, Afolabi O, Arubayi JB (2005) Delineation of contamination plume around oxidation sewage-ponds in Southwestern Nigeria. Environ Geol 48:1137–1146. doi:10.1007/s00254-005-0056-5

    Article  Google Scholar 

  • AGI (Advanced Geosciences, Inc.) (2009) Instruction manual for EarthImager 2-D, Resistivity and IP Inversion Software, Version 2.4.0, Austin, Texas, Advanced Geosciences, Inc

  • Al-Yaqout AF, Hamoda MF (2003) Evaluation of landfill leachate in arid climate—a case study. Environ Int 29:593–600

    Article  Google Scholar 

  • Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarization investigations at a waste disposal site and its environments. J Appl Geophys 44:275–302. doi:10.1016/S0926-9851(99)00022-1

    Article  Google Scholar 

  • Bavusi M, Rizzo E, Lapenna V (2006) Environ Geol 51:301–308. doi:10.1007/s00254-006-0327-9

    Article  Google Scholar 

  • Bernstone C, Dahlin T, Ohlsson T, Hogland W (2000) DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environ Geol 39(3–4):360–368. doi:10.1007/s002540050015

    Article  Google Scholar 

  • Catt LML, West LJ, Clark RA (2009) The use of reference models from a priori data to guide 2-D inversion of electrical resistivity tomography data. Geophys Prospect 57:1035–1048

    Article  Google Scholar 

  • Carpenter PJ, Aizhong Ding, Lirong Cheng, Puxin Liu, Fulu Chu (2009) Apparent formation factor for leachate saturated waste and sediments: examples from the USA and China. J Earth Sci 20(3):606–617

    Article  Google Scholar 

  • Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71(6):B231–B239. doi:10.1190/1.2360184

    Article  Google Scholar 

  • Dahlin T, Leroux V (2012) Improvement in time-domain induced polarization data quality with multi-electrode systems by separating current and potential cables. Near Surf Geophys 10(6):545–565

    Google Scholar 

  • Dahlin T, Sandström T (2012) Data quality quantification for time domain IP data acquired at a former waste deposit in Lund. In: Near surface geoscience 2012—18th European meeting of environmental and engineering geophysics. Paris, France, 3–5 September 2012

  • Dahlin T, Zhou B (2004) A numerical comparison of 2-D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398

    Article  Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation. Elsevier Scientific, Amsterdam

    Google Scholar 

  • De Donno G, Cardarelli E (2017) Tomographic inversion of time-domain resistivity and chargeability data for the investigation of landfills using a priori information. Waste Manag 59:302–315

    Article  Google Scholar 

  • Degueurce A, Clément R, Moreau S, Peu P (2016) On the value of electrical resistivity tomography for monitoring leachate injection in solid state anaerobic digestion plants at farm scale. Waste Manag 56:125–136

    Article  Google Scholar 

  • Depountis N, Harris C, Davies MCR, Koukis G, Sabatakakis N (2005) Application of electrical imaging to leachate plume evolution studies under in situ and model conditions. Environ Geol 47:907–914. doi:10.1007/s00254-004-1219-5

    Article  Google Scholar 

  • Elwaseif M, Slater L (2010) Quantifying tomb geometries in resistivity images using watershed algorithms. J Archaeolog Sci 37:1424–1436

    Article  Google Scholar 

  • Forsberg K, Nilsson A, Flyhammar P, Dahlin LT (2006) Resistivity imaging for mapping of groundwater contamination at the municipal landfill La Chureca, Managua, Nicaragua. Near Surface 2006—Helsinki, Finland, 4–6 September 2006

  • Frid V, Liskevich G, Doudkinski D, Korostishevsky N (2008) Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environ Geol 53:1503–1508. doi:10.1007/s00254-007-0761-3

    Article  Google Scholar 

  • Frid V, Doudkinski D, Liskevich G, Shafran E, Averbakh A, Korostishevsky N, Prihidko L (2010) Geophysical–geochemical investigation of fire-prone landfills. Environ Geol 60:787–798. doi:10.1007/s12665-009-0216-0

    Google Scholar 

  • Frid V, Averbakh A, Frid M, Doudkinski D, Liskevich G (2015) Statistical analysis of resistivity anomalies caused by underground caves. Pure appl Geophys. doi:10.1007/s00024-015-1106-x

    Google Scholar 

  • Gallas JDF, Taioli F, Filho WM (2011) Induced polarization, resistivity, and self-potential: a case history of contamination evaluation due to landfill leakage. Environ Earth Sci 63:251–261. doi:10.1007/s12665-010-0696-y

    Article  Google Scholar 

  • Gazoty A, Fiandaca G, Pedersen J, Auken E, Christiansen AV, Pedersen JK (2012) Application of time domain induced polarization to the mapping of lithotypes in a landfill site. Hydrol Earth Syst Sci 16:1793–1804. doi:10.5194/hess-16-1793-2012

    Article  Google Scholar 

  • Genelle F, Sirieix C, Riss J, Naudet V (2012) Monitoring landfill cover by electrical resistivity tomography on an experimental site. Eng Geol 145–146:18–29. doi:10.1016/j.enggeo.2012.06.002

    Article  Google Scholar 

  • Georgaki I, Soupios P, Sakkas N, Ververidis F, Trantas E, Vallianatos F, Manios T (2008) Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills. Sci Total Environ 389:522–531

    Article  Google Scholar 

  • Guerin R, Munoz ML, Christophe A, Laperrelle C, Hidra M, Drouart E, Grellier S (2004) Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Manag 24:785–794

    Article  Google Scholar 

  • Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448

    Article  Google Scholar 

  • Hermans T, Vandenbohede A, Lebbe L, Martin R, Kemna A, Beaujean J, Nguyen F (2012) Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. J Hydrol 438–439:168–180

    Article  Google Scholar 

  • Karlık G, Kaya MA (2001) Investigation of groundwater contamination using electric and electromagnetic methods at an open waste-disposal site: a case study from Isparta, Turkey. Environ Geol 40(6):725–731

    Article  Google Scholar 

  • Kaufmann O, Deceuster J, Quinif Y (2012) An electrical resistivity imaging-based strategy to enable site-scale planning over covered paleo-karst features in the Tournaisis area (Belgium). Eng Geol 133–134:49–65

    Article  Google Scholar 

  • Kaya MA, Özürlan G, Şengül E (2007) Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Çanakkale, Turkey. Environ Monit Assess 135:441–446. doi:10.1007/s10661-007-9662-x

    Article  Google Scholar 

  • Koestel J, Kemna A, Javaux M, Binley A, Vereecken H (2008) Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resour Res 44(W12411):1–17

    Google Scholar 

  • Leroux V, Dahlin T, Svensson M (2007) Dense resistivity and induced polarization profiling for a landfill restoration project at Härlöv, Southern Sweden. Waste Manag Res 25:49–60. doi:10.1177/0734242X07073668

    Article  Google Scholar 

  • Leroux V, Dahlin T, Rosqvist H (2010) Time-domain IP and resistivity sections measured at four landfills with different contents. In: Near surface 2010—16th European meeting of environmental and engineering geophysics. 6–8 September 2010, Zurich, Switzerland

  • Loke MH (2016) Tutorial: 2-D and 3-D electrical imaging surveys. 1–136

  • Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  • Martinho E, Almeida F (2006) 3D behaviour of contamination in landfill sites using 2-D resistivity/IP imaging: case studies in Portugal. Environ Geol 49:1071–1078. doi:10.1007/s00254-005-0151-7

    Article  Google Scholar 

  • Mondelli G, Giacheti HL, Boscov MEG, Elis VR, Hamada J (2007) Geoenvironmental site investigation using different techniques in a municipal solid waste disposal site in Brazil. Environ Geol 52:871–887. doi:10.1007/s00254-006-0529-1

    Article  Google Scholar 

  • Naveen BP, Mahapatra D, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12

    Article  Google Scholar 

  • Ntarlagiannis D, Robinson J, Soupios P, Slater L (2016) Field-scale electrical geophysics over an olive oil mill waste deposition site: evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination. J Appl Geophys 135:418–426

    Article  Google Scholar 

  • Olivier F, Gourc JP (2007) Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell. Waste Manag 27:44–58

    Article  Google Scholar 

  • Ogilvy R, Meldrum R, Chanbers J (2002) The use of 3-D electrical resistivity tomography to characterise waste and leachate distribution within a closed landfill. Thriplow, UK. J Environ Eng Geophys 7(1):11–18

    Article  Google Scholar 

  • Papadopoulos NG, Tsourlos P, Tsokas GN, Sarris A (2007) Efficient ERT measuring and inversion strategies for 3-D imaging of buried antiquities. Near Surf Geophys 5:349–361

    Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  Google Scholar 

  • Rucker DF, Levitt MT, Greenwood WJ (2009) Three-dimensional electrical resistivity model of a nuclear waste disposal site. J Appl Geophys 69(3–4):150–164

    Article  Google Scholar 

  • Slater L, Lesmes DP (2002) IP interpretation in environmental investigations. Geophysics 67:77–88

    Article  Google Scholar 

  • Slater L, Sandberg SK (2000) Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients. Geophysics 65(2):408–420

    Article  Google Scholar 

  • Slater L, Binley A, Daily W, Johnson R (2000) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44:85–102

    Article  Google Scholar 

  • Solovov AP (1985) Geochemical methods of economical materials exploration. Nedra (in Russian)

  • Soupios PM, Vallianatos F, Papadopoulos I, Makris JP, Marinakis M (2005) Surface-geophysical investigation of a landfill in Hania, Crete. International workshop in “Geoenvironment and 1 Geotechnics”, September 2005, Milos island, Greece

  • Soupios P, Papadopoulos I, Kouli M, Georgaki I, Vallianatos F, Kokkinou E (2006) Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environ Geol 51:1249–1261. doi:10.1007/s00254-006-0418-7

    Article  Google Scholar 

  • Soupios P, Papadopoulos N, Papadopoulos I, Kouli M, Vallianatos F, Sarris A, Manios T (2007) Application of integrated methods in mapping waste disposal areas. Environ Geol 53:661–675. doi:10.1007/s00254-007-0681-2

    Article  Google Scholar 

  • Sparrenbom CJ, Åkessona S, Johansson S, Hagerberg D, Dahlin T (2017) Investigation of chlorinated solvent pollution with resistivity and induced polarization. Sci Total Environ 575:767–778

    Article  Google Scholar 

  • Stoltz G, Gourc JP, Oxarango L (2010) Characterisation of the physico-mechanical parameters of MSW. Waste Manag 30:1439–1449

    Article  Google Scholar 

  • Tatsi AA, Zouboulis AI (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv Environ Res 6:207–219

    Article  Google Scholar 

  • Tezkan B (1999) A review of environmental applications of quasi-stationary electromagnetic techniques. Surv Geophys 20:279–308

    Article  Google Scholar 

  • Vaudelet P, Schmutz M, Pessel M, Franceschi M, Guérin R, Atteia O, Blondel A, Ngomseu C, Galaup S, RejibaF Bégassat P (2011) Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. J Appl Geophys 75:738–751. doi:10.1016/j.jappgeo.2011.09.023

    Article  Google Scholar 

  • Worthington PF (1993) The uses and abuses of the Archie equations. 1. The formation factor porosity relationship. J Appl Geophys 30:215–228

    Article  Google Scholar 

  • Zornberg JG, Jernigan BL, Sanglerat TR, Cooley BH (1999) Retention of free liquids in landfills undergoing vertical expansion. J Geotechn Geoenviron Eng 125(7):583–594

    Article  Google Scholar 

  • Zume JT, Tarhule A, Christenson S (2006) Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma. Ground Water Monit Remediat 26(2):62–69. doi:10.1111/j.1745-6592.2006.00066.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Frid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frid, V., Sharabi, I., Frid, M. et al. Leachate detection via statistical analysis of electrical resistivity and induced polarization data at a waste disposal site (Northern Israel). Environ Earth Sci 76, 233 (2017). https://doi.org/10.1007/s12665-017-6554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6554-4

Keywords

Navigation