Skip to main content
Log in

Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The main aim of this paper is to exploit information obtained from satellite SAR data to detect and monitor instability phenomena affecting hilly and scarcely urbanized areas, overtaking some of the restrictions due to the presence of thick vegetation. To this end, phase and amplitude analyses of COSMO-SkyMed SAR data were carried out on two landslides located in the North-Eastern Italian pre-Alps: Cischele roto-translational slide and Val Maso rotational slide—earth flow. In the first case, the careful choice of processing parameters allowed to evaluate landslide displacement fields considering the phase difference between SAR acquisitions. In the second case, the speed of movement and the deep changes in morphology and vegetation induced by the landslide did not allow to apply DInSAR techniques; in this case the variation in the amplitude between SAR acquisitions allowed to detect the area affected by the instability. Obtained results show that methods and techniques to analyse satellite SAR data could be further refined in order to provide useful tools for landslide mapping and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ayele A, Jacques E, Kassim M, Kidane T, Omar A, Tait S, Nercessian A, de Chabalier JB, King G (2007) The volcano-seismic crisis in Afar, Ethiopia, starting September 2005. Earth Planet Sci Lett 255(1–2):177–187. doi:10.1016/j.epsl.2006.12.014

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383. doi:10.1109/TGRS.2002.803792

    Article  Google Scholar 

  • Bertolino A (2010) Evento alluvionale novembre 2010. Dissesto in località Val Maso, Quartiere Val Maso. Indagini in sito: Geofisiche e sondaggi (Flood event of November 2010. Val di Maso landslide, Val Maso area. In situ survays: geophysical investigations and boreholes). Professional report, Province of Vicenza, Italy (in Italian)

  • Bianchini S, Cigna F, Righini G, Proietti C, Casagli N (2012) Landslide HotSpot mapping by means of persistent scatterer interferometry. Environ Earth Sci 67:1155–1172. doi:10.1007/s12665-012-1559-5

    Article  Google Scholar 

  • Biggs J, Anthony EY, Ebinger CJ (2009) Multiple inflation and deflation events at Kenyan volcanoes, East Afrinca Rift. Geology 37(11):979–982. doi:10.1130/G30133A.1

    Article  Google Scholar 

  • Bovenga F, Nitti DO, Fornaro G, Radicioni F, Stoppini A, Brigante R (2013) Using C/X-band SAR intorferometry and GNSS measurements for the Assisi landslide analysis. Int J Remote Sens 34(11):4083–4104. doi:10.1080/01431161.772310

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Andvanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at differential scales. Eng Geol 112(1–4):29–42. doi:10.1016/j.enggeo.2010.01.003

    Article  Google Scholar 

  • Casu F, Manconi A, Pepe A, Lanari R (2011) Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude pixeloffset SBAS technique. IEEE Trans Geosci Remote Sens 49(7):2752–2763. doi:10.1109/TGRS.2010.2104325

    Article  Google Scholar 

  • Chaabane F, Tupin F, Maitre H (2005) An empirical model for interferometric coherence. In: Proceedings of SPIE—the international society for optical engineering, 5980, art. no. 59800E. doi:10.1117/12.627341

  • Chendi M (1974) Studio Geologico dei dintorni del Monte Alba (Geological study around the Mount Alba area). Graduation thesis, Department of Earth Sciences, Padova

  • Colesanti C, Wasowsky J (2006) Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88(3–4):173–199. doi:10.1016/j.enggeo.2006.09.013

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng Geol 68(1–2):3–14. doi:10.1016/S0013-7952(02)00195-3

    Article  Google Scholar 

  • Darteni GF (2011) Intervento di drenaggio e consolidamento di un centro abitato in prossimità della S.P. 246 in località Cischele nel Comune di Recoaro Terme. Drainage and stabilization intervention of a residential area closed to the provincial road S.P. 246, located in Cischele Contrada in Recoaro Terme Municipality. Professional report, Province of Vicenza, Italy (in Italian)

  • De Vecchi G, Di Lallo E, Sedea R (1986) Note illustrative della carta geologica dell’area di Valli del Pasubio–Posina–Laghi (scala 1:20.000). Illustrative notes of the geological map of Valle del Pasubio-Posina-Laghi area, scale 1:20.000. Mem Sc Geol Univ Padova 38:187–205 (in Italian)

    Google Scholar 

  • Duro J, Gaset M, Koudogbo FN, Arnaud A (2012) Combination of X-band high resolution SAR data from different sensors to produce ground deformation maps. In: Proceedings of fringe 2011 workshop, September 19–23, 2011, Frascati, Italy. ESA special publication, SP-697. January 2012, CD. ISBN 978-92-9092-261-2, ISSN 1609-042X

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212. doi:10.1109/36.868878

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. doi:10.1109/36.898661

    Article  Google Scholar 

  • Floris M, D’Alpaos A, De Agostini A, Stevan G, Tessari G, Genevois R (2012) A process-based model for the definition of hydrological alert systems in landslide risk mitigation. Nat Hazards Earth Syst Sci 12:3343–3357. doi:10.5194/nhess-12-3343-2012

    Article  Google Scholar 

  • Floris M, D’Alpaos A, De Agostini A, Tessari G, Stevan G, Genevois R (2013) Variation in the occurrence of rainfall events triggering landslides. In: Margottini C, Canutti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp. 131–138. doi:10.1007/978-3-642-31337-0_17

  • García-Davalillo J, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11:225–246. doi:10.1007/s10346-012-0379-8

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038. doi:10.1029/1998GL900033

    Article  Google Scholar 

  • Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci 66:1585–1595. doi:10.1007/s12665-011-0951-x

    Article  Google Scholar 

  • Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2014) Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci Rev 133:1–17. doi:10.1016/j.earsscirev.2014.02.005

    Article  Google Scholar 

  • Li ZW, Ding XL, Huang C, Zhu JJ, Chen YL (2008) Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J Photogramm Remote Sens 63(6):621–634. doi:10.1016/j.isprsjprs.2008.03.001

    Article  Google Scholar 

  • LTS (Land Technology and Services) (2011) Rilievo laserscanner terrestre e punti topografici di un’area in frana in località Val del Maso (Vicenza). Terrestrial laserscanning and topographic points of a landslide in Val Maso area, Vicenza. Professional report, Province of Vicenza, Italy, 2011 (in italian)

  • Manconi A, Casu F, Ardizzone F, Bonano M, Cardinali M, De Luca C, Gueguen E, Marchesini I, Parise M, Vennari C, Lanari R, Guzzeti F (2014) Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Nat Hazards Earth Syst Sci 14:1835–1841. doi:10.5194/nhess-14-1835-2014

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36(4):441–500. doi:10.1029/97RG03139

    Article  Google Scholar 

  • MATTM (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Italian Ministry of the Environmental and for Protection of the Land and Sea) (2009) Piano straordinario di telerilevamento ambientale. Linee guida per l’analisi di dati interferometrici satellitari in aree soggette a dissesti idrogeologici. National plan of environmental remote sensing. Guidelines to analyze interferometric satellite data in areas affected by hydrogeological instabilities (in italian). http://www.pcn.minambiente.it

  • Merryman Boncori JP, Papoutsis I, Pezzo G, Atzori S, Ganas A, Karastathis V, Salvi S, Kontoes C, Antonioli A (2015) The February 2014 Cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques. Seismol Res Lett 86:1–14. doi:10.1785/0220140126

    Article  Google Scholar 

  • Michel R, Avouac JP (1999) Measuring ground displacement from SAR amplitude images: application to the Landers earthquake. Geophys Res Lett 26(7):875–878. doi:10.1029/1999GL900138

    Article  Google Scholar 

  • Moro M, Chini M, Saroli M, Atzori S, Stramondo S, Salvi S (2011) Analysis of large, seismically induced, gravitational deformations imaged by high-resolution COSMO-SkyMed synthetic aperture RADAR. Geology 39:527–530. doi:10.1130/G31748.1

    Article  Google Scholar 

  • Novellino A, De Agostini A, Di Martire D, Ramondini M, Floris M, Calcaterra D (2015) Using data from multiple SAR sensors in landslide characterization: case studies from different geomorphological contexts in Italy. In: Lollino G, Giordan D, Crosta G, Corominas J, Azzam R, Wasowski J, Sciarra N (eds)Engineering geology for society and territory, vol 2. Springer, New York, pp 395–398. doi: 10.1007/978-3-319-09057-3_62

  • Park JM, Song WJ, Pearlman WA (1999) Speckle filtering of SAR images based on adaptive windowing. Vision Image Signal Process IEE Proc 146(4):191–197. doi:10.1049/ip-vis:19990550

    Article  Google Scholar 

  • Pola M, Ricciato A, Fantoni R, Fabbri P, Zampieri D (2014) Architecture of the western margin of the North Adriatic foreland: the Schio-Vicenza fault system. Ital J Geosci 133(2):223–234. doi:10.3301/IJG.2014.04

    Article  Google Scholar 

  • Raucoles D, de Michele M, Malet JP, Ulrich P (2013) Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR): application to La Valette landslide (South French Alps). Remote Sens Environ 139:198–204. doi:10.1016/j.rse.2013.08.006

    Article  Google Scholar 

  • Rott H (2009) Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Prog Phys Geogr 33(6):769–791. doi:10.1177/0309133309350263

    Article  Google Scholar 

  • Rott H, Nagler T (2006) The contribution of radar interferometry to assessment of landslide hazards. Adv Space Res 37(4):710–719. doi:10.1016/j.asr.2005.06.059

    Article  Google Scholar 

  • Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluation sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ 147:133–144. doi:10.1016/j.rse.2014.03.003

    Article  Google Scholar 

  • Tessari G, Cioli C, Stevan G, Floris M (2013) Using PS-InSAR data to evaluate temporal evolution of instability phenomena: the case study of Cischele landslide (North-Eastern Italian Alps). Rendiconti On-Line Soc Geol It 24:313–315

    Google Scholar 

  • Tomás R, Romero R, Mulas J, Marturià JJ, Mallorquí JJ, Lopez-Sanchez JM, Herrera G, Gutiérrez F, González PJ, Fernández J, Duque S, Concha-Dimas A, Cocksley G, Castañeda C, Carrasco D, Blanco P (2014) Radar interferometry techniques for the study of ground subsidence phenomena: a re-view of practical issues through cases in Spain. Environ Earth Sci 71(1):163–181. doi:10.1007/s12665-013-2422-z

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives. Eng Geol 174:103–138. doi:10.1016/j.enggeo.2014.03.003

    Article  Google Scholar 

  • Wasowski J, Bovenga F, Nitti DO, Nutricato R (2012) Investigating landslides with Persistent Scatterers Interferometry (PSI): current issues and challenges. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Proceedings of the 11th international and 2nd North American symposium on landslides, Banff (Canada), 3–8 June, 2012. Landslides and Engineered Slopes 2. CRC Press/Balkema, Leiden, The Netherlands, pp 1295–1301

  • Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma-manteined tirf segmentation at continental rupture in the 2005 Afar dyking episode. Nature. doi:10.1038/nature04978

    Google Scholar 

  • Xiao J, Li J, Moody A (2003) A detail-preserving and flexible adaptive filter for speckle suppression in SAR imagery. Int J Remote Sens 24(12):2451–2465. doi:10.1080/01431160210154885

    Article  Google Scholar 

  • Xie M, Huang J, Wang L, Huang J, Wang Z (2016) Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir. Environ Earth Sci 75:717. doi:10.1007/s12665-016-5446-3

    Article  Google Scholar 

  • Xue Y, Meng X, Wasowsk J, Chen G, Li K, Guo P, Bovenga F, Zeng R (2015) Spatial analysis of surface deformation distribution detected by persistent scatterer interferometry in Lanzhou Region, China. Environ Earth Sci 75:80. doi:10.1007/s12665-015-4806-8

    Article  Google Scholar 

  • Yerro A, Corominas J, Monells D, Mallorquί JJ (2014) Analysis of the evolution of ground movements in a low densely urban area by means of DInSAR technique. Eng Geol 170:52–65. doi:10.1016/j.enggeo.2013.12.002

    Article  Google Scholar 

  • Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslide 7(3):359–365. doi:10.1007/s10346-010-0225-9

    Article  Google Scholar 

Download references

Acknowledgements

Project was carried out using CSK®Products © of the Italian Space Agency (ASI), delivered under a licence to use by ASI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tessari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessari, G., Floris, M. & Pasquali, P. Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps. Environ Earth Sci 76, 85 (2017). https://doi.org/10.1007/s12665-017-6403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6403-5

Keywords

Navigation