Skip to main content
Log in

Effect of lateral bed roughness variation on particle suspension in open channels

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this paper the effect of variation of bed roughness along lateral direction on suspension concentration distribution in open channel turbulent flows was investigated. Starting from the mass and momentum conservation equations, this study demonstrates that both the Reynolds shear stress \((-\overline{u'v'})\) and sediment diffusivity depends on bed roughness. From the theoretical analysis, it is found that both the Reynolds shear stress and the sediment diffusivity increase over smooth bed surfaces and decrease over rough bed surfaces. At the junction of smooth and rough bed surface, the effect of bed roughness on the Reynolds shear stress and sediment diffusion is almost negligible. Including this effect, suspension concentration distribution is also studied and from the Hunt’s diffusion equation, an analytical model for predicting suspension concentration is proposed. Apart from this effect, the effects of moveable bed roughness and stratification are also considered in the model. It is observed that the Rouse equation is obtained from the proposed model as a special case when the flow is considered as single phase and there is no effect of secondary current, stratification and bed roughness variation. On the basis of experimental data available in literature, the proposed model is validated and also compared with the Rouse equation. To get a quantitative idea about the goodness of fit, weighted relative error is calculated. The comparison results and calculated errors indicate that the present model is capable of describing the suspension concentration distribution more accurately than Rouse model throughout the flow depth in open channel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A+1\) :

\((=\rho _{\rm s}/\rho _{\rm f})\) Specific gravity of particles

Ar:

\((=b/h)\) Channel aspect ratio

\({\rm Ar}_{\rm crit}\) :

Critical aspect ratio

\(B_{\rm s}\) :

Log law constant

b :

Channel width

C :

Volumetric sediment concentration

\(C_{\rm a}\) :

Reference concentration

\(C_{\rm d}\) :

Drag coefficient

\(C_{\rm m}\) :

Maximum volumetric concentration

d :

Particle diameter

\(d_*\) :

Dimensionless particle diameter

g :

Gravitational acceleration

h :

Flow depth

\(k_{\rm s}\) :

Bed roughness height

\(l_{\rm r}\) :

\((=k_{\rm s}/h)\) Relative bed roughness height

\(M_*\) :

Density coefficient of bed material

n :

Number of data points

\(P_*\) :

Grain size percentage

\({\rm Re}_*\) :

Roughness Reynolds number

\({\rm R}_i\) :

Richardson number

S :

Channel slope

\(S_*\) :

Fluid-sediment parameter

\(S_1\) :

Sum of residuals

\(S_{\rm c}\) :

(\(1/\gamma \)) Schmidt number

\(S_{\rm co}\) :

Computed concentration

\(S_{\rm o}\) :

Observed concentration

u :

Streamwise velocity

\(u'\) :

Fluctuating part of u

\(u_*\) :

Shear velocity

\(u_{\rm surf}\) :

Fluid surface velocity

v :

Vertical component of velocity

\(v'\) :

Fluctuating part of v

\(V_{\rm wind}\) :

Wind velocity

w :

Lateral component of velocity

\(w'\) :

Fluctuating part of w

\(\overline{u'v'}\), \(\overline{u'w'}\) :

Reynolds shear stresses

x :

Longitudinal co-ordinate

y :

Vertical co-ordinate

\(y_0\) :

Moveable bed roughness height

z :

Lateral co-ordinate

\(\alpha \) :

A parameter

\(\beta \) :

Parameter

\(\beta _1\) :

Stratification parameter

\(\varepsilon _{\rm s}\) :

Sediment diffusion coefficient

\(\varepsilon _{\rm sn}\) :

Sediment diffusivity in neutral flow

\(\varepsilon _{\rm m}\) :

Momentum diffusion coefficient

\(\varepsilon _{\rm mn}\) :

Momentum diffusivity in neutral flow

\(\gamma \) :

Proportionality constant

\(\kappa \) :

von Karman coefficient

\(\mu \) :

Dynamic viscosity

\(\mu _*\) :

Relative viscosity

\(\nu \) :

Kinematic viscosity

\(\psi \) :

Shields parameter

\(\psi _*\) :

Critical shields parameter

\(\phi \), \(\varPhi \), \(\varPsi \) :

functions

\(\rho _{\rm f}\) :

Density of fluid

\(\rho _{\rm air}\) :

Density of air

\(\theta \) :

Angle for channel slope

\(\tau \) :

Total shear stress

\(\tau _{\rm b}\) :

Bed shear stress

\(\tau _{xy}\), \(\tau _{xz}\) :

Components of total shear stresses

\(\eta \) :

\((=z/h)\) Dimensionless lateral coordinate

\(\xi \) :

\((=y/h\)) Dimensionless depth

\(\omega _0\) :

Particle settling velocity

\(\omega _*\) :

Relative settling velocity

References

  • Armenio V, Sarkar S (2002) An investigation of stably stratified turbulent channel flow using large-eddy simulation. J Fluid Mech 459:1–42. doi:10.1017/S0022112002007851

    Google Scholar 

  • Bogardi J (1974) Sediment transport in alluvial streams. Akademial Kiodo, Budapest

    Google Scholar 

  • Bonakdari H, Larrarte F, Lassabatere L, Joannis C (2008) Turbulent velocity profile in fully-developed open channel flows. Environ Fluid Mech 8:1–17

    Article  Google Scholar 

  • Bose SK, Dey S (2009) Suspended load in flows on erodible bed. Int J Sediment Res 24:315–324

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Cao Z, Wei L, Xie J (1995) Sediment-laden flow in open channels from two-phase flow viewpoint. J Hydraul Eng 121(10):725–735

    Article  Google Scholar 

  • Cheng NS (2003) A diffusive model for evaluating thickness of bedload layer. Adv Water Resour 26:875–882

    Article  Google Scholar 

  • Chiu CL, McSparran JE (1966) Effect of secondary flow on sediment transport. Proc ASCE 92(HY5):57–70

    Google Scholar 

  • Coleman JM (1969) Brahmaputra river; channel process and sedimentation. Sediment Geol 3:129–239

    Article  Google Scholar 

  • Coleman NL (1986) Effects of suspended sediment on the open-channel velocity distribution. Water Resour Res 22(10):1377–1384

    Article  Google Scholar 

  • Colombini M (1993) Turbulence driven secondary flows and the formation of sand ridges. J Fluid Mech 254:701–719. doi:10.1017/S0022112093002319

    Article  Google Scholar 

  • Dallali M, Armenio V (2015) Large eddy simulation of two-way coupling sediment transport. Adv Water Resour 81:33–44. doi:10.1016/j.advwatres.2014.12.004

    Article  Google Scholar 

  • Einstein HA, Chien NS (1955) Effects of heavy sediment concentration near the bed on velocity and sediment distribution. US Army Corps of Engineers, Missouri River Division, Report No. 8

  • Falcomer L, Armenio V (2002) Large-eddy simulation of secondary flow over longitudinally-ridged walls. J Turbul 3:1–17. doi:10.1088/1468-5248/3/1/008

    Article  Google Scholar 

  • Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill, New York

    Google Scholar 

  • Guo J, Julien PY (2001) Turbulent velocity profiles in sediment-laden flows. J Hydraul Res 39(1):11–23

    Article  Google Scholar 

  • Herrmann MJ, Madsen OS (2007) Effect of stratification due to suspended sand on velocity and concentration distribution in unidirectional flows. J Geophys Res. doi:10.1029/2006JC003569

    Google Scholar 

  • Huang S, Sun Z, Xu D, Xia S (2008) Vertical distribution of sediment concentration. J Zhejiang Univ Sci A 9(11):1560–1566

    Article  Google Scholar 

  • Immamoto H, Ishigaki T (1988) Measurement of secondary flow in an open channel. In: Proceedings of the 6th IAHR-APD Congress, Kyoto, Japan, pp 513–520

  • Jan CD, Wang JS, Chen TH (2006) Discussion of simulation of flow and mass dispersion in meandering channel. J Hydraul Eng 132(3):339–342

    Article  Google Scholar 

  • Karcz I (1981) Reflections on the origin of small scale longitudinal streambed scours. In: Morisawa M (ed) Fluvial geomorphology: a Proceedings of the forth annual geomorphology symposia series. Allen and Unwin, London, pp 149–177

  • Kinoshita R (1967) An analysis of the movement of flood waters by aerial photography; concerning characteristics of turbulence and surface. Photogr Surv 6:1–17 (in Japanese)

    Google Scholar 

  • Kundu S, Ghoshal K (2012) An analytical model for velocity distribution and dip-phenomenon in uniform open channel flows. Int J Fluid Mech Res 39(5):381–395

    Article  Google Scholar 

  • Kundu S, Ghoshal K (2014) Effects of secondary current and stratification on suspension concentration in an open channel flow. Environ Fluid Mech 14(6):1357–1380

    Article  Google Scholar 

  • Liao K, Qu J, Tang J, Ding F, Liu H, Zhu S (2010) Activity of wind-blown sand and the formation of feathered sand ridges in the Kumtagh Desert, China. Bound Layer Meteorol 135:333–350. doi:10.1007/s10546-010-9469-0

    Article  Google Scholar 

  • Mazumder BS, Ghoshal K (2006) Velocity and concentration profiles in uniform sediment-laden flow. Appl Math Model 30:164–176

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanisms. MIT Press, Cambridge

    Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. IAHR monograph. Balkema, Rotterdam

    Google Scholar 

  • Nezu I, Rodi W (1985) Experimental study on secondary currents in open channel flow. In: 21th IAHR congress. IAHR, Melbourne, pp 115–119

  • Nezu I, Nakagawa H, Kawashima N (1988) Cellular secondary currents and sand ribbons in fluvial channel flows. In: Proceedings of the 6th congress APD-IAHR, Madrid, vol 2, pp 51–58

  • Nikuradse J (1933) Stromungsgesetz in rauhren rohren, vDI Forschungshefte 361 (English translation: Laws of flow in rough pipes). Tech Rep NACA Technical Memorandum 1292. National Advisory Commission for Aeronautics, Washington, DC, USA (1950)

  • Prandtl, L.: Bericht nber untersuchungen zur ausgebildeten turbulenz. Zeitschrift f\(\ddot{u}\)r Angewandte Mathematik und Mechanik 5, 136–139 (1925)

  • Rouse H (1937) Modern concepts of the mechanics of turbulence. Trans ASCE 102:463–543

    Google Scholar 

  • Sambrook Smith GH, Ferguson RI (1996) The gravel-sand transition: flume study of channel response to reduce slope. Geomorphology 16:147–159. doi:10.1016/0169-555X(95)00140-Z

    Article  Google Scholar 

  • Smith JD, McLean S (1977) Patially averaged flow over a wavy surface. J Geophys Res 82(12):1735–1746

    Article  Google Scholar 

  • Soulsby R (1997) Dynamics of marine sands. Thomas Telford, London

    Google Scholar 

  • Sun ZL, Sun ZF, Donahue J (2003) Equilibrium bed-concentration of nonuniform sediment. J Zhejiang Univ Sci 4(2):186–194

    Article  Google Scholar 

  • Taylor J, Sarkar S, Armenio V (2005) Large eddy simulation of stably stratified open channel flow. Phys Fluids. doi:10.1063/1.2130747

    Google Scholar 

  • Tracy H (1965) Turbulent flow in a three-dimentional channel. J Hydraul Eng 91(6):9–35

    Google Scholar 

  • Umeyama M (1992) Vertical distribution of suspended sediment in uniform open channel flow. J Hydraul Eng 118(6):936–941

    Article  Google Scholar 

  • Vanoni VA (1940) Experiments on the transportation of suspended sediment by water. Ph.D. thesis, California Institute of Technology, Pasadina, California

  • Vanoni VA (1946) Transportation of suspended sediment by running water. Trans ASCE 111:67–133

    Google Scholar 

  • Wang X, Qian N (1989) Turbulence characteristics of sediment-laden flows. J Hydraul Eng 115(6):781–799

    Article  Google Scholar 

  • Wang ZQ, Cheng NS (2005) Secondary flows over artificial bed strips. Adv Water Resour 28(5):441–450

    Article  Google Scholar 

  • Wang ZQ, Cheng NS (2006) Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv Water Resour 29(11):1634–1649

    Article  Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw Hill Book Company, New York

    Google Scholar 

  • Wright S, Parker G (2004a) Density stratification effects in sand-bed rivers. J Hydraul Eng 130(8):783–795

    Article  Google Scholar 

  • Wright S, Parker G (2004b) Flow resistance and suspended load in sand-bed rivers: Simplified stratification model. J Hydraul Eng 130(8):796–805

    Article  Google Scholar 

  • Yang SQ (2007) Turbulent transfer mechanism in sediment-laden flow. J Geophys Res. doi:10.1029/2005JF000452

    Google Scholar 

  • Yang SQ, Tan SK, Lim SY (2004) Velocity distribution and dip-phenomenon in smooth uniform open channel flows. J Hydraul Eng 130(12):1179–1186

    Article  Google Scholar 

  • Zhiyao S, Tingting W, Fumin X, Ruijie L (2008) A simple formula for predicting settling velocity of sediment particles. Water Sci Eng 1(1):37–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S. Effect of lateral bed roughness variation on particle suspension in open channels. Environ Earth Sci 75, 631 (2016). https://doi.org/10.1007/s12665-016-5418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5418-7

Keywords

Navigation