Skip to main content

Advertisement

Log in

Dust emission modeling for the western border region of Mexico and the USA

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The border area between northwestern Mexico and the southwestern USA is composed of arid and semi-arid regions that are highly vulnerable to wind erosion. As a result, dust resuspension events take place that result in episodes of high concentrations of fine particulate matter in the atmosphere. In winter, air quality standards on both sides of the border are often exceeded. However, accurate estimates of the emission of windblown dust are rare, particularly for Mexico. In this study, emissions of particulate matter from mineral origin (dust) with an aerodynamic diameter less than 2.5 and 10 μm (PM2.5 and PM10, respectively) were estimated for the border area for a short winter episode (January 4–12, 2006). For this purpose, a mesoscale meteorological model and a wind erosion model were used. The wind erosion model had a horizontal spatial resolution of 4 km × 4 km and a temporal resolution of 1 h. A georeferenced database of surface conditions obtained from satellite data was used in conjunction with soil parameter digital maps to generate the inputs required by the wind erosion model. The PM10 emissions for the entire domain and episode were estimated at ~643 g km−2 h−1 and the PM2.5 emissions were estimated at ~47 g km−2 h−1. The wind erosion model was subject to three sensitivity tests based on perturbation of the input surface parameters. The model output was more sensitive to changes in soil parameters (soil density and plastic pressure) than to changes in land surface data (leaf area index and fraction of vegetation cover).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ADEQ, Arizona Department of Environmental Quality (1999) Douglas/Agua Prieta air pollution study protocol. Memorandum AQD:AAS: EVAL:PGH:222-8-17-99. Phoenix, Arizona

  • Alfaro E, Flores G, Harta F, de la Orozco HA, Quintana R, Osornio AR (1997) In vitro induction of abnormal anaphases by contaminating atmospheric dust from the city of Mexicali, Baja California, Mexico. Arch Med Res 28(4):549–553

    Google Scholar 

  • Burstall L, Harris PM (1983) The estimation of percentage light interception from leaf area index and percentage ground cover in potatoes. J Agri Sci 100(01):241–244

    Article  Google Scholar 

  • CEC, Commission for Environmental Cooperation (1997) Ecological regions of North America toward a common perspective. Communications and Public Outreach Department of CEC Secretariat. Montreal, Quebec, Canada

  • Chin M, Diehl T, Ginoux P, Malm W (2007) Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmos Chem Phys 7:5501–5517. doi:10.5194/acp-7-5501-2007

    Article  Google Scholar 

  • Choi YJ, Fernando H (2008) Implementation of a windblown dust parameterization into MODELS-3/CMAQ: application to episodic PM events in the US/Mexico border. Atmos Environ 42(24):6039–6046. doi:10.1016/j.atmosenv.2008.03.038

    Article  Google Scholar 

  • Choi YJ, Hydeb P, Fernando H (2006) Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmos Environ 40(27):5181–5201. doi:10.1016/j.atmosenv.2006.04.025

    Article  Google Scholar 

  • CONABIO, National Commission for the Knowledge and Use of Biodiversity (2001) Pedological map. http://www.conabio.gob.mx-/informacion/gis/. Accessed 26 Apr 2012

  • Darmenova K, Sokolik IN, Shao Y, Marticorena B, Bergametti G (2009) Development of a physically based dust emission module within the weather research y forecasting (WRF) model: assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia. J Geophys Res. doi:10.1029/2008JD011236

    Google Scholar 

  • Davis WT (2000) Air pollution engineering manual. Wiley, New York, pp 117–135

    Google Scholar 

  • Draxler R, Gillette D, Kirkpatrick J, Heller J (2001) Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos Environ 35(25):4315–4330. doi:10.1016/S1352-2310(01)00159-5

    Article  Google Scholar 

  • Draxler R, Ginoux P, Stein A (2010) An empirically derived emission algorithm for wind-blown dust. J Geophys Res. doi:10.1029/2009JD013167

    Google Scholar 

  • Espert V, López A (2004) Dispersión de contaminantes en la atmósfera. 1st edn. Universidad Politécnica de Valencia, España. Spanish version Alfaomega editors, Mexico

  • Giannadaki D, Pozzer A, Lelieveld J (2014) Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos Chem Phys 14:957–968. doi:10.5194/acp-14-957-2014

    Article  Google Scholar 

  • Gillette D, Adams J, Muhs D, Kihl R (1982) Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air. J Geophys Res 87(C11):9003–9015

    Article  Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero J, Holben B, Dubovik O, Lin S (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106(D17):20255–20273

    Article  Google Scholar 

  • Gläser G, Kerkweg A, Wernli H (2012) The mineral dust cycle in EMAC 2.40: sensitivity to the spectral resolution and the dust emission scheme. Atmos Chemis Phys 12:1611–1627. doi:10.5194/acp-12-1611-2012

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note, NCAR/TN-398+STR. Boulder, CO. doi:10.5065/D60Z716B

  • Gryning S, Schiemeier F (2001) Air pollution modeling and its application XIV. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Han X, Ge C, Tao J, Zhang M, Zhang R (2012) Air quality modeling for a strong dust event in East Asia in March 2010. Aerosol Air Qual Res 12:615–628. doi:10.4209/aaqr.2011.11-.0191

    Google Scholar 

  • He Q, Yang X, Mamtimin A, Tang S (2011) Impact factors of soil wind erosion in the center of Taklimakan Desert. J Arid Land 3(1):9–14. doi:10.3724/SP.J.1227.2011.00009

    Article  Google Scholar 

  • Hufkens K, Bogaert J, Dong QH, Lu L, Huang CL, Ma MG, Ched T, Li X, Veroustraete F, Ceulemans R (2008) Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. J Arid Environ 72:1490–1505. doi:10.1016/j.jaridenv.2008.02.012

    Article  Google Scholar 

  • INEGI, Mexico’s National Institute of Statistics and Geography (1998) Perfiles de suelos un recorrido por los suelos de Mexico. Banco de Informacion sobre Perfiles de Suelo. Aguas calientes, México

  • Kang JY, Yoon SC, Shao Y, Kim SW (2011) Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. J Geophys Res Atmos. doi:10.1029/-2010JD014649

    Google Scholar 

  • Kemball-Cook S, Jia Y, Emery C, Morris R, Wang Z, Tonnesen G (2004) 2002 annual MM5 simulation to support WRAP CMAQ visibility modeling for the Section 308 SIP/TIP: MM5 sensitivity simulations to identify a more optimal MM5 configuration for simulating meteorology in the Western US. Western Regional Air Partnership, California

    Google Scholar 

  • Liu M, Westphal DL (2001) A study of the sensitivity of simulated mineral dust production to model resolution. J Geophys Res Atmos 106(16):18099–18112. doi:10.1029/2000JD900711

    Article  Google Scholar 

  • Marticorena B, Bergametti G, Aumont B, Callot Y, N’Doume C, Legrand M (1997) Modeling the saharan dust cycle: 2. Simulation of saharan dust sources. J Geophys Res Atmos 102(D4):4387–4404. doi:10.1029/96JD02964

    Article  Google Scholar 

  • Millard P, Wright GG, Adams MJ, Birnie RV, Withworth P (1990) Estimation of light interception and biomass of the potato (Solanumtuberosum L.) from reflection in the red and near-infrared spectral bands. Agric For Meteorol 53(1–2):19–31. doi:10.1016/01681923(90)90121-L

    Article  Google Scholar 

  • Möller D (2010) Chemistry of the climate system. Walter de Gruyter GmbH & Co. KG, New york

    Google Scholar 

  • Mueller SF, Mallard JW, Mao Q, Shaw SL (2013) Fugitive particulate emission factors for dry fly ash disposal. J Air Waste Manag Assoc 63(7):806–818

    Article  Google Scholar 

  • Muñoz G, Quintero M, Pumfrey Ross (2012) Air quality at the US-Mexican border: current state and future considerations toward sustainable The US Mexican border environment: binational air quality management. SCERP MONOGRAPH SERIES 16: 219–265. California, US

  • NASA, National Aeronautics and Space Administration (2012) Level-4 MODIS global leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) product. USGS Earth Resources Observation and Science Center. http://glovis.usgs.gov/ Accessed 22 Feb 2014

  • NRCS, Natural Resources Conservation Service (2005) Soil survey staff United States department of agriculture. Soil survey geographic (SSURGO). Database for Arizona New Mexico. http://datagateway.nrcs.usda.gov/ Accessed 29 Jul 2011

  • Osornio AR, Hernandez NA, Yanez AG, Ussler W, Overby LH, Brody AR (1991) Lung cell toxicity experimentally induced by a mixed dust from Mexicali Baja California Mexico. Environ Res 56(1):31–47. doi:10.1016/S0013-9351(05)80107-0

    Article  Google Scholar 

  • Otte TL, Pleim JE (2010) The meteorology-chemistry interface processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1. Geosci Model Dev 3:243–256. doi:10.5194/gmd-3-243-2010

    Article  Google Scholar 

  • Park S, In H (2003) Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J Geophys Res Atmos 108(D19):4618. doi:10.1029/2003JD003484

    Article  Google Scholar 

  • Park YK, Park SH (2010) Development of a new wind-blown-dust emission module using comparative assessment of existing dust models. Part Sci Technol 28(3):267–286. doi:10.1080/02726351.2010.491761

    Article  Google Scholar 

  • Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res Atmos 109(D10):202. doi:10.1029/2003JD004372

    Article  Google Scholar 

  • Shao Y (2008) Physics and modeling of wind erosion, 2nd edn. Springer, Berlin

    Google Scholar 

  • Shao Y, Ishizuka M, Mikami M, Leys J (2011) Parameterization of size-resolved dust emission and validation with measurements. J Geophys Res Atmos 116(D08):203. doi:10.1029/2010JD014527

    Google Scholar 

  • Shao Y, Fink AH, Klose M (2010) Numerical simulation of a continental-scale Saharan dust event. J Geophys Res Atmos 115(D13):205. doi:10.1029/2009JD012678

    Article  Google Scholar 

  • Sierra A, Vanoye A, Mendoza A (2013) Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode. J Air Waste Manag Assoc 63(10):1221–1233. doi:10.1080/10962247.2013.813875

    Article  Google Scholar 

  • Thomas D (2011) Arid zone geomorphology: Process form and change in drylands, 3rd edn. Oxford, UK

    Book  Google Scholar 

  • Tillack A, Clasen A, Kleinschmit B, Förster M (2014) Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens Environ 141:52–63. doi:10.1016/j.rse.2013.10.018

    Article  Google Scholar 

  • Vanoye A, Mendoza A (2009) Mesoscale meteorological simulations of summer ozone episodes in Mexicali and Monterrey Mexico: analysis of model sensitivity to grid resolution and parameterization schemes. Water Air Soil Pollut 9:185–202. doi:10.1007/s11267-009-9205-2

    Article  Google Scholar 

  • Wang K, Zhang Y, Nenes A, Fountoukis C (2012) Implementation of dust emission and chemistry into the community multiscale air quality modeling system and initial application to an Asian dust storm episode. Atmos Chem Phys 12:10209–10237. doi:10.5194/acp-12-10209-2012

    Article  Google Scholar 

  • Wang JY, Wang SG, Yang Y, Li Y, Guo YT (2013) Application of four schemes for sand and dust emissions in China. Appl Mech Mater 295:1654–1658

    Article  Google Scholar 

  • WRAP, Western Regional Air Partnership (2006) WRAP fugitive dust handbook. Western Governors’ Association, WGA contract 30204-111, Westlake Village, pp 1–26

    Google Scholar 

  • Yilmaz MT, Hunt ER, Goins LD, Ustin SL, Vanderbilt VC, Jackson TJ (2008) Vegetation water content during SMEX04 from ground data and Landsat 5 thematic mapper imagery. Remote Sens Environ 112:350–362. doi:10.1016/j.rse.2007.03.029

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Tecnológico de Monterrey through Grant 0020CAT186. J. Carmona further acknowledges the support (scholarship) received from Mexico’s National Council for Science and Technology (CONACYT) during her research stay at Tecnológico de Monterrey. The authors gratefully acknowledge Dr. Yaping Shao from the University of Hong Kong for providing the dust emission module used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mendoza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona, J.M., Vanoye, A.Y., Lozano, F. et al. Dust emission modeling for the western border region of Mexico and the USA. Environ Earth Sci 74, 1687–1697 (2015). https://doi.org/10.1007/s12665-015-4173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4173-5

Keywords

Navigation