Skip to main content

Advertisement

Log in

Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Muztag Ata is a mountain known as the “Father of glaciers” in the west of China. However, its glacier flow pattern has never been studied. In this paper, the velocity of mountain glaciers on Muztag Ata is mapped by two methods (InSAR and offset-tacking) using SAR data. This map provides a detailed view of the features of glacier motion on Muztag Ata. A special effort was also made to assess the accuracy of the glacier velocity estimates. To ensure the accuracy of the derived results, the validation of the results was conducted over two glaciers (Saliymek Glacier and Kuksay Glacier). The two methods yielded similar results that agree well with each other. The patterns of glacier velocity on Muztag Ata suggest that mountain topography, westerly winds and the monsoon have a strong influence. Our results show that motion of glaciers in the southern and western regions of Muztag Ata is faster than that in the northern and eastern regions. Eleven glaciers were identified, along which glacier velocities exhibited distinctive behavior in terms of the spatial variability of the glacier motion. The occurrence of the local flow maxima and minima at consistent locations over different parts of different glaciers suggests that the subglacial topography, glacier size and glacier orientation affect the overall flow patterns. The velocities are very low in the surface debris cover of some glaciers, which suggests debris cover has an impact on glacier motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Prob 14:1–54

    Article  Google Scholar 

  • Benn DI, Bolch T, Hands K, Gulley J, Luckman A, Nicholson LI, Quincey D, Thompson S, Toumi R, Wiseman S (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci Rev 114:156–174

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan Glaciers. Science 336:310–314

    Article  Google Scholar 

  • Bozhinskiy A, Krass M, Popovnin V (1986) Role of debris cover in the thermal physics of glaciers. J Glaciol 32(111):255–266

    Google Scholar 

  • Cai D, Ma J, Nian Y, Liu S, Shangguan D (2006) The study of glacier change using remote sensing in Mt. Muztagta. J Lanzhou Univ (Nat Sci) 42(1):13–17 (in Chinese)

    Google Scholar 

  • Chen C, Zebker H (2002) Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans Geosci Remote Sens 40(8):1709–1719

    Article  Google Scholar 

  • Cheng X, Xu G (2006) The integration of JERS-1 and ERS SAR in differential interferometry for measurement of complex glacier motion. J Glaciol 52(176):80–88

    Article  Google Scholar 

  • Dolgushin L, Lebedeva I, Osipova G, Rototayeva O (1972) The influence of Aeolian dusting of glaciers and superficial moraine on glacier thawing in Central Asia. Data of Glaciol. FStudies 20:108–116

    Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5:322–325

    Article  Google Scholar 

  • Goldstein R, Engelhard R, Kamb B, Frolich R (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262:1525–1530

    Article  Google Scholar 

  • Gourmelen N, Kim S, Shepherd A, Park JW, Sundal A, Bjonsson H, Pálsson F (2011) Ice velocity determined using conventional and multiple-aperture InSAR. Earth Planet Sci Lett 307(1):156–160

    Article  Google Scholar 

  • Gray L, Mattar K, Vachon P (1998) InSAR results from the RADARSAT Antarctic mapping mission: estimation of glacier motion using a simple registration procedure. In: Proceedings of IGARSS 1998, Seattle, USA, pp 6–10

  • Gray L, Mattar K, Sofko G (2000) Influence of ionospheric electron density fluctuations on satellite radar interferometry. Geophys Res Lett 27(10):1451–1454

    Article  Google Scholar 

  • Gray L, Short N, Mattar K, Jezek K (2001) Velocities and flux of the Filchner Ice Shelf and its tributaries determined from speckle tracking interferometry. Can J Remote Sens 27(3):193–206

    Google Scholar 

  • Howat I, Joughin I, Fahnestock M, Smith B, Scambos T (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate. J Glaciol 54(187):646–660

    Article  Google Scholar 

  • Hubbard B, Glasser NF (2005) Field techniques in glaciology and glacial geomorphology: glacier mass balance and motion. Wiley, Chichester, pp 179–216

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang Z, Liu S, Peters J, Lin J, Long S, Han Y, Wang X et al (2012) Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environ Earth Sci 67(4):1033–1043

    Article  Google Scholar 

  • Joughin I (2002) Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann Glaciol 34:195–201

    Article  Google Scholar 

  • Joughin I, Winebrenner D, Fahnestock M, Kwok R, Krabill W (1996a) Measurement of ice-sheet topography using satellite-radar interferometry. J Glaciol 42:10–22

    Google Scholar 

  • Joughin I, Kwok R, Fahnestock M (1996b) Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. J Glaciol 42:564–575

    Google Scholar 

  • Joughin I, Kwok R, Fahnestock M (1998) Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans Geosci Remote Sens 36(1):25–37

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498

    Article  Google Scholar 

  • Kwok R, Fahnestock M (1996) Ice sheet motion and topography from radar interferometry. IEEE Trans Geosci Remote Sens 34(1):189–200

    Article  Google Scholar 

  • Li Z, Yao T, Tian L, Xu B, Wu G, Zhu G (2004) Borehole temperature at the ice-core drilling site in the Muztag Ata glacier, East Pamirs. J Glaciol Geocryol 25(6):280–284 (In Chinese)

    Google Scholar 

  • Li Z, Xing Q, Liu S, Zhou J, Huang L (2012) Monitoring thickness and volume changes of the Dongkemadi ice field on the Qinghai-Tibetan Plateau (1969–2000) using shuttle radar topography mission and map data. Int J Digit Earth 5(6):516–532

    Article  Google Scholar 

  • Liu C, Wang Z, Ding L (2001) Glacier inventory of China. Revised edition. Pamirs (Drainage basins of Kaxgar River and others). Gansu Culture Publishing House, Lanzhou (in Chinese)

    Google Scholar 

  • Liu H, Zhao Z, Kenneth C (2007) Synergistic fusion of interferometric and speckle-tracking methods for deriving surface velocity from interferometric SAR data velocity from interferometric SAR data 4(1):102–106

    Google Scholar 

  • Luckman A, Quincey D, Bevan S (2007) The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens Environ 111(2):172–181

    Article  Google Scholar 

  • Mcmillan M, Shepherd A, Gourmelen N, Park J, Nienow P, Rinne E, Leeson A (2012) Mapping ice-shelf flow with interferometric synthetic aperture radar stacking. J Glaciol 58(208):265–277

    Article  Google Scholar 

  • Michel R, Rignot E (1999) Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry. J Glaciol 45(149):93–100

    Google Scholar 

  • Mohr JJ, Reeh N, Madsen S (1998) Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 391(6664):273–276

    Article  Google Scholar 

  • Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264(5156):243–245

    Article  Google Scholar 

  • Pritchard H, Murray T, Luckrnan A, Strozzi T, Barr S (2005) Glacier surge dynamics of Sortebræ, east Greenland, from synthetic aperture radar feature tracking. J Geophys Res 110(F3):F03005. doi:10.1029/2004JF000233

  • Pu J, Yao T, Duan K (2003) An observation on surface ablation on the Yangbark glacier in the Muztagata Ata, China. J Glaciol Geocryol 25(6):280–284 (in Chinese)

    Google Scholar 

  • Reuter H, Nelson A, Jarvis A (2007) An evaluation of void-filling interpolation methods for SRTM data. Int J Geogr Inform Sci 21(9):983–1008

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311(5763):986–990

    Article  Google Scholar 

  • Rignot E, Forster R, Isacks B (1996) Interferometric radar observations of Glaciar San Rafael, Chile. J Glaciol 42(141):279–291

    Google Scholar 

  • Rodriguez E, Martin J (1992) Theory and design of interferometric synthetic aperture radars. IEEE Proc F 139(2):147–159

    Article  Google Scholar 

  • Rosen P, Hensley S, Joughin I, Li F, Madsen S, Rodriguez E, Goldstein R (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382

    Article  Google Scholar 

  • Rott H, Stuefer M, Siegel A, Skvarca P, Eckstaller A (1998) Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys Res Lett 25(9):1407–1410

    Article  Google Scholar 

  • Scherler D, Leprince SM, Strecker R (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery—accuracy improvement and quality assessment. Remote Sens Environ 112:3806–3819

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker M (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159

    Google Scholar 

  • Shangguan D, Liu S, Ding Y, Ding L (2004) Monitoring results of Glacier changes in China Karakorum and Muztag Ata-Konggur mountains by remote sensing. J Glaciol Geocryol 26(3):374–375 (in Chinese)

    Google Scholar 

  • Shangguan D, Liu S, Ding Y, Ding L, Xiong L, Cai D, Li G, Lu A, Zhang S, Zhang Y (2006) Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier inventory and recent satellite imagery. Ann Glaciol 43:79–85

    Article  Google Scholar 

  • Shusun L, Carl B, Rudi G, Craig L (2008) Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques. Remote Sens Environ 112:3628–3638

    Article  Google Scholar 

  • Strozzi T, Luckman A, Murray T, Wegmüller U, Werner C (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans Geosci Remote Sens 40(11):2384–2391

    Article  Google Scholar 

  • Strozzi T, Kouraev A, Wiesmann A, Wegmüller U, Sharov A, Werner C (2008) Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens Environ 112:636–645

    Article  Google Scholar 

  • Su Z, Liu S, Wang Z (1989) Modern glaciers of Mt. Muztag Ata and Mt. Kongur. J Nat Resour 4(3):241–246 (In Chinese)

    Google Scholar 

  • Werner C, Wegmüller U, Strozzi T, Wiesmann A (2005) Precision estimation of local offsets between SAR SLCs and detected SAR images. In: Proceedings of IGARSS 2005, Seoul, Korea, pp 25–29

  • Wu G, Yao T, Xu B, Li Z, Bao H (2003) Ice-core borehole temperature in the Muztag Ata, East Pamirs. J Glaciol Geocryol 25(6):676–679 (in Chinese)

    Google Scholar 

  • Yang H, An R (1989) Glacier inventory of China. Karakorum Mountains (Drainage basin of the Yarkant River). Science Press, Beijing (in Chinese)

    Google Scholar 

  • Yao T (2002) Dynamical features of Cryosphere in middle Tibetan Plateau. Geological Press, Beijing, pp 221–222

    Google Scholar 

  • Zhang X (1980) Recent variation in the glacial termini along the Karakoram highway. Acta Geographica Sinica 35(2):149–160 (in Chinese)

    Google Scholar 

  • Zhao Z (2001) Surface velocities of the East Antarctic ice streams from Radarsat-1 interferometric synthetic aperture radar data, Ph.D. dissertation, The Ohio State University, Columbus

  • Zhou J, Li Z, Li X, Liu S, Chen Q, Xie C, Tian B (2011) Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data. Int J Remote Sens 32(22):6911–6928

    Article  Google Scholar 

  • Zwally H, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297(5579):218–222

    Article  Google Scholar 

Download references

Acknowledgments

Special appreciation is due to Shangguan Donghui for his helpful suggestions on this paper. Our research is supported by the Chinese Ministry of Science and Technology (Grant No. 2010CB951403 and 2009CB723901) and the National Natural Science Foundation of China (Grant No. 41001042) and the Center for Earth Observation and Digital Earth, Chinese Academy Sciences Director Fund Project (Grant No. Y2ZZ05101B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Li, Z. & Guo, W. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environ Earth Sci 71, 3581–3592 (2014). https://doi.org/10.1007/s12665-013-2749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2749-5

Keywords

Navigation