Skip to main content

Advertisement

Log in

Impacts of subsurface heat storage on aquifer hydrogeochemistry

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The use of shallow aquifers for subsurface heat storage in terms of energy management and building climatisation can lead to a temperature rise in the aquifer to 70 °C and above. The influence of temperature changes on individual mineral and sorption equilibria, reaction kinetics and microbial activity is largely known. However, the impact of heating to temperatures as high as 70 °C on the aquifer overall system has not been quantified yet. Temperature-related changes in sediment ion exchange behaviour, dimension and rates of mineral dissolution and precipitation as well as microbially enhanced redox processes were studied in column experiments using aquifer sediment and tap water at 10, 25, 40, and 70 °C. At 70 °C, a change in sediment sorption behaviour for cations and organic acids was postulated based on temporal changes in pH, magnesium, and potassium concentration in the experimental solution. No clear changes of pH, TIC and major cations were found at 10–40 °C. Redox zoning shifted from oxic conditions towards nitrate and iron(III) reducing conditions at 25 and 40 °C and sulphate reducing conditions at 70 °C. This was attributed to (a) a temperature-related increase in microbial reduction activity, and (b) three times higher release of organic carbon from the sediment at 70 °C compared to the lower temperatures. The findings of this study predict that a temperature increase in the subsurface up to 25 °C and above can impair the usability of ground water as drinking and process water, by reducing metal oxides and thus possibly releasing heavy metals from the sediment. Generally, at 70 °C, where clear cation and organic carbon desorption processes were observed and sulphate reducing conditions could be achieved, a site-specific assessment of temperature effects is required, especially for long-term operations of subsurface heat storage facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201

    Article  Google Scholar 

  • Alagappan G, Cowan RM (2004) Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere 54:1255–1265

    Article  Google Scholar 

  • Andersson S, Nilsson SI (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol Biochem 33:1181–1191

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2007) Geochemistry, groundwater and pollution, vol 2. Balkema, Amsterdam

    Google Scholar 

  • Arning E, Kölling M, Panteleit B, Reichling J, Schulz HD (2006) Einfluss oberflächennaher Wärmegewinnung auf gechemische Prozesse im Grundwasserleiter. Grundwasser 1(2006):27–39

    Article  Google Scholar 

  • Bansal OP (1982) Thermodynamics of K-Ni and Ca-Ni exchange reactions on kaolinite clay. J Soil Sci 33:63–71

    Article  Google Scholar 

  • Blum P, Campillo G, Münch W, Kölbel T (2010) CO2 savings of ground source heat pump systems—a regional analysis. Renew Energy 35:122–127

    Article  Google Scholar 

  • Brady PV, Walther JV (1992) Surface chemistry and silicate dissolution at elevated temperatures. Am J Sci 292:636–658

    Article  Google Scholar 

  • Brielmann H, Griebler C, Schmidt SI, Michel R, Lueders T (2009) Effects of thermal energy discharge on shallow groundwater. FEMS Microbiol Ecol 68:273–286

    Article  Google Scholar 

  • Brielmann H, Lueders T, Schreglmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 16:77–91

    Article  Google Scholar 

  • Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Resour Res 25(6):729–736

    Article  Google Scholar 

  • Carroll SA, Walther JV (1990) Kaolinte dissolution at 25°, 60°, and 80 °C. Am J Sci 290:797–810

    Article  Google Scholar 

  • Chen Y, Brantley SL (1997) Temperature- and pH-dependence of albite dissolution rate at acid pH. Chem Geol 135:275–290

    Article  Google Scholar 

  • Christ MJ, David MB (1996) Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol Biochem 28(9):1191–1199

    Article  Google Scholar 

  • Coudrain-Ribstein A, Gouze P, de Marsly G (1998) Temperature-carbon dioxide partial pressure trends in confined aquifers. Chem Geol 145:73–89

    Article  Google Scholar 

  • Deeb RA, Alvarez-Cohen L (1999) Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioeng 62(5):526–536

    Article  Google Scholar 

  • Echeverría J, Indurain J, Churio E, Garrido J (2003) Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloids Surf Phys Eng Aspects 218:175–187

    Article  Google Scholar 

  • El-Batouti M, Sadek OM, Assaad FF (2003) Kinetics and thermodynamics studies of copper exchange on Na-montmorillonite clay mineral. J Colloid Interface Sci 259:223–227

    Article  Google Scholar 

  • Elsgaard L, Isaksen MF, Jorgensen BB, Alayse A-M, Jannasch HW (1994) Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58(16):3335–3343

    Article  Google Scholar 

  • Eugster WJ, Sanner B (2007) Technological status of shallow geothermal energy in Europe. In: Proceedings European Geothermal Congress, Unterhaching, Germany, 2007

  • Förstner U, Grathwohl P (2002) Ingenieurgeochemie. Springer, Berlin

    Google Scholar 

  • Gödde M, David MB, Christ MJ, Kaupenjohann M, Vance GF (1996) Carbon mobilization from the forest floor under red spruce in the northeastern USA. Soil Biol Biochem 28(9):1181–1189

    Article  Google Scholar 

  • Griebler C, Brielmann H, Lueders T, Schmidt SI (2009) Sustainable energy production from geothermal sources and possible effects to groundwater systems. Int Soc Limnol News 55:17–18

    Google Scholar 

  • Griffioen J, Appelo CAJ (1993) Nature and extent of carbonate precipitation during aquifer thermal energy storage. Appl Geochem 8:161–176

    Article  Google Scholar 

  • Hähnlein S, Molina-Giraldo N, Blum P, Bayer P, Grathwohl P (2010) Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden. Grundwasser 15:123–133

    Article  Google Scholar 

  • Hekmat MA (1982) Sedimentologie, Petrographie und Geochemie des Miozäns aus den Bohrungen Osdorf—westlich von Hamburg, Neu-Börnsen und Kasseburg im süd-östlichen Schleswig-Holstein

  • Heron G, Christensen TH (1995) Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer (Vejen, Denmark). Environ Sci Technol 29:187–192

    Article  Google Scholar 

  • Hölting B (1996) Hydrogeologie. Einführung in die Allgemeine und Angewandte Hydrogeologie, vol 5. Enke

  • Hori K, Hiramatsu N, Nannbu M, Kanie K, Okochi M, Honda H, Watanabe H (2009) Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene conversion rate. J Biosci Bioeng 107(3):250–255

    Article  Google Scholar 

  • Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25(11):1537–1546

    Article  Google Scholar 

  • Icenhower JP, Dove PM (2000) The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim Cosmochim Acta 64(24):4193–4203

    Article  Google Scholar 

  • Jordan G, Rammensee W (1996) Dissolution rates and activation energy for dissolution of brucite (001): a new method based on the microtopography of crystal surfaces. Geochim Cosmochim Acta 60(24):5055–5062

    Article  Google Scholar 

  • Kaiser K, Zech W (1998) Rates of dissolved organic matter release and sorption in forest soils. Soil Sci 163(9):714–725

    Article  Google Scholar 

  • Kaiser K, Kaupenjohann M, Zech W (2001) Sorption of dissolved organic carbon in soils: effects of soil sample storage, soil-to-solution ratio, and temperature. Geoderma 99:317–328

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  Google Scholar 

  • Köhler SJ, Dufaud F, Oelkers EH (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50 °C. Geochim Cosmochim Acta 67(19):3583–3594

    Article  Google Scholar 

  • Kranz S, Bartels J, Gehrke D, Hoffmann F, Wolfgramm M (2008) Wärme- und Kältespeicherung in Aquiferen. bbr - Fachmagazin für Brunnen- und Leitungsbau 59(7/8):34–43

    Google Scholar 

  • Lewandowski Z (1982) Temperature dependency of biological denitrification with organic materials addition. Water Res 16:19–22

    Article  Google Scholar 

  • Li X, Chen Z, Zhao J (2006) Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchangers. Appl Therm Eng 26:1564–1571

    Article  Google Scholar 

  • Maag M, Vinther FP (1996) Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl Soil Ecol 4:5–14

    Article  Google Scholar 

  • Malhi SS, McGill WB, Nyborg M (1990) Nitrate losses in soils: effect of temperature, moisture and substrate concentration. Soil Biol Biochem 22:733–737

    Article  Google Scholar 

  • Mangold D, Schmidt T (2006) Saisonale Wärmespeicher: neue Pilotanlagen im Programm Solarthermie2000plus und Forschungsperspektiven. In: Statusseminar Thermische Energiespeicher, Freiburg, 2006

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants—mobile colloids in the subsurface environment may alter the transport of contaminants. Environ Sci Technol 23(5):496–502

    Google Scholar 

  • Ogwada RA, Sparks DL (1986) A critical evaluation on the use of kinetics for determining thermodynamics of ion exchange in soils. Soil Sci Soc Am J 50:300–305

    Article  Google Scholar 

  • Opel O, Linares JAN, Ruck WKL (2007) Saisonale Wärmespeicherung im Aquifer—Ergebnisse aus dem deutschen Reichstagskomplex in Berlin. In: Geothermiekongress, Bochum, 2007

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. Open File Report. U.S. Geological Survey

  • Pallud C, Van Cappellen P (2006) Kinetics of microbial sulphate reduction in estuarine sediments. Geochim Cosmochim Acta 70:1148–1162

    Article  Google Scholar 

  • Pannike S, Kölling M, Panteleit B, Reichling J, Scheps V, Schulz HD (2006) Auswirkung hydrogeologischer Kenngrößen auf die Kältefahnen von Erdwärmesonden in Lockersedimenten. Grundwasser 1(2006):6–18

    Article  Google Scholar 

  • Pereira JAM, Schwaab M, DellÓro E, Pinto JC, Monteiro JLF, Henriques CA (2009) The kinetics of gibbsite dissolution in NaOH. Hydrometallurgy 96:6–13

    Article  Google Scholar 

  • Rabus R, Brüchert V, Amann J, Könneke M (2002) Physiological response to temperature changes of the marine, sulphate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417

    Article  Google Scholar 

  • Rafferty K (2003) Ground water issues in geothermal heat pump systems. Ground Water 41(4):408–410

    Article  Google Scholar 

  • Rimstidt JD (1997) Quartz solubility at low temperatures. Geochim Cosmochim Acta 61(13):2553–2558

    Article  Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Saner D, Juraske R, Kübert M, Blum P, Hellweg S, Bayer P (2010) Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renew Sustain Energy Rev 14:1798–1813

    Article  Google Scholar 

  • Schmidt T, Müller-Steinhagen H (2005) Erdsonden- und Aquifer-Wärmespeicher in Deutschland. In: OTTI Profiforum Oberflächennahe Geothermie, Regenstauf, 2005

  • Stumm W, Morgan JJ (1996) Aquatic Chemistry. Environmental Science & Technology, New York

    Google Scholar 

  • ten Hulscher TEM, Cornelissen G (1996) Effects of temperature on sorption equilibrium and sorption kinetics of organic micropollutants. Chemosphere 32(4):609–629

    Article  Google Scholar 

  • Udo EJ (1978) Thermodynamics of potassium-calcium and magnesium-calcium exchange reactions on a kaolinitic soil clay. Soil Sci Soc Am J 42:556–560

    Article  Google Scholar 

  • Westermann P (1996) Temperature regulation of anaerobic degradation of organic matter. World J Micorbiol Biotechnol 12:497–503

    Article  Google Scholar 

  • Westrich JT, Berner RA (1988) The effect of temperature on rates of sulphate reduction in marine sediments. Geomicrobiol J 6:99–117

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Willemsen A, Appelo CAJ (1985) Chemical reactions during heat storage in shallow aquifers in the Netherlands: laboratory experiments and geochemical modelling. In: 18th Congress of the international association of hydrogeologists, Cambridge, 1985. Hydrogeology in the Service of Man

Download references

Acknowledgments

This study was funded by the German Ministry of Science, Economic Affairs and Transport and the Christian-Albrechts-University of Kiel and was part of the “GeoCITTI” research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Jesußek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesußek, A., Grandel, S. & Dahmke, A. Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69, 1999–2012 (2013). https://doi.org/10.1007/s12665-012-2037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2037-9

Keywords

Navigation