Skip to main content

Advertisement

Log in

The regional pressure impact of CO2 storage: a showcase study from the North German Basin

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A regional scale, showcase saline aquifer CO2 storage model from the North German Basin is presented, predicting the regional pressure impact of a small industrial scale CO2 storage operation on its surroundings. The intention of the model is to bridge the gap between generic and site-specific, studying the role of fluid flow boundary conditions and petrophysical parameters typically found in the North German Basin. The numerical simulation has been carried out using two different numerical simulators, whose results matched well. The most important system parameters proved to be the model’s hydrological boundary conditions, rock compressibility, and permeability. In open boundary aquifers, injection-induced overpressures dissipate back to hydrostatic level within a few years. If a geological flow barrier is present on at least one side of the aquifer, pressure dissipation is seriously retarded. In fully closed compartments, overpressures can never fully dissipate, but equilibrate to a compartment-wide remnant overpressure. At greater distances to the injection well, maximum fluid pressures are in the range of a few bar only, and reached several years to decades after the end of the actual injection period. This is important in terms of long-term safety and monitoring considerations. Regional pressure increase impacts the storage capacities of neighbouring sites within hydraulically connected units. It can be concluded that storage capacities may be seriously over- or underestimated when the focus is on a single individual storage site. It is thus necessary to assess the joint storage capacities and pressure limitations of potential sites within the same hydraulic unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Deutsch–English. Geologisches Jahrbuch A153:3–95

    Google Scholar 

  • Bielinski A (2007) Numerical simulation of CO2 sequestration in geological formations. Dissertation, Institut für Wasserbau, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2007/2953/pdf/01_Diss_Bielinski.pdf. Accessed 27 April 2011

  • Birkholzer J, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenh Gas Control 3:745–756

    Article  Google Scholar 

  • Birkholzer J, Zhou Q, Tsang CF (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3:181–194

    Article  Google Scholar 

  • Brooks AN, Corey AT (1964) Hydraulic properties of porous media. In: Hydrol Pap Fort Collins, Colorado State University

  • Class H, Helmig R, Bastian P (2002) Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. an efficient solution technique. Adv Water Resour 25:533–550

    Article  Google Scholar 

  • Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Naderi Beni A, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations—summary and discussion of the results. Comput Geosci. doi:10.1007/s10596-009-9146-x

  • Diener I, Pasternack G, Stollenberg K, Tesch M, Tessin R, Toleikis R, Wormbs J (1990) Geologische Perspektivitätsbewertung für die Geothermienutzung in NE-Deutschland—Blatt Berlin/Frankfurt (Oder). Unpublished report, UWG GmbH, Berlin

  • Dose T (2008) A consistent approach to CO2 storage capacity estimation for deep saline formations. DGMK Tagungsbericht 1:93–103

    Google Scholar 

  • Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 200 bar. Chem Geol 193:257–271

    Article  Google Scholar 

  • Eigestad GT, Dahle HK, Hellevang B, Riis F, Johansen WT, Øian E (2009) Geological modeling and simulation of CO2 injection in the Johansen formation. Comput Geosci 13:435–450

    Article  Google Scholar 

  • Frailey S (2009) Methods for estimating CO2 storage in saline reservoirs. Energy Procedia 1:2769–2776

    Article  Google Scholar 

  • Geluk MC, Röhling HG (1998) High-resolution sequence stratigraphy of the Lower Triassic Buntsandstein: a new tool for basin analysis. Zbl Geol Paläont, Teil 1(7/8):727–745

    Google Scholar 

  • Hall HN (1953) Compressibility of reservoir rocks. Petrol Trans AIME 198:309–311

    Google Scholar 

  • Hoth P, Seibt A, Kellner T (1997) Chemische Charakterisierung der Thermalwässer. In: Hoth P, Seibt A, Kellner T, Huenges E (eds) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrogeothermaler Ressourcen in Norddeutschland. GFZ-Potsdam, STR97/15, pp 43–80

  • IEA (2008) Energy technology perspectives. IEA report, Paris

  • IEAGHG (2010) Pressurisation and brine displacement issues for deep saline formation CO2 storage. IEAGHG Report 2010/15

  • IEAGHG (2011) CO2 Capture and Storage R, D & D Projects Database. http://www.co2captureandstorage.info/co2db.php Accessed 01 February 2011

  • IPCC (2005) International panel on climate change special report on carbon capture and storage. Cambridge University Press, New York

    Google Scholar 

  • Knopf S, May F, Müller C, Gerling JP (2010) Neuberechnung möglicher Kapazitäten zur CO2-Speicherung in tiefen Aquifer-Strukturen. Energiewirtschaftliche Tagesfragen 2010(4):76–80

    Google Scholar 

  • Kopp A, Class H, Helmig R (2009a) Investigations on CO2 storage capacity in saline aquifers—part 1: dimensional analysis of flow processes and reservoir characteristics. Int J Greenh Gas Control 3:263–276. doi:0.1016/j.ijggc.2008.10.002

    Article  Google Scholar 

  • Kopp A, Class H, Helmig R (2009b) Investigations on CO2 storage capacity in saline aquifers—part 2: estimation of storage capacity coefficients. Int J Greenh Gas Control 3:277–287. doi:10.1016/j.ijggc.2008.10.001

    Article  Google Scholar 

  • Kyoto Protocol (1997) http://unfccc.int/resource/docs/convkp/kpeng.html. Accessed 01 February 2011

  • Leverett MC (1941) Capillary behaviour in porous solids. Trans AIME 142:152–169

    Google Scholar 

  • May F, Brune S, Gerling P, Krull P (2003) Möglichkeiten zur untertägigen Speicherung von CO2 in Deutschland–eine Bestandsaufnahme. Geotechnik 26(3):162–172

    Google Scholar 

  • May F, Müller C, Bernstone C (2005) How much CO2 can be stored in Germany? VGB Powertech 6(2005):32–37

    Google Scholar 

  • Newman GH (1973) Pore-volume compressibility of consolidated, friable, and unconsolidated reservoir rocks under hydrostatic loading. JPT 1973:129–134

    Google Scholar 

  • Oruganti Y, Bryant SL (2009) Pressure build-up during CO2 storage in partially confined aquifers. Energy Procedia 1:3315–3322

    Article  Google Scholar 

  • Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J, Bense V (2010) Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois Basin. Int J Greenh Gas Control 4:840–854

    Article  Google Scholar 

  • Reinhardt HG et al (1991) Regionales Kartenwerk (Reflexionsseismik). Unpublished atlas, VEB Geophysik Leipzig

    Google Scholar 

  • Reinhold K, Krull P, Kockel F (2008) Salzstrukturen Norddeutschlands 1: 500 000. BGR, Berlin

    Google Scholar 

  • Sung WM, Lee YS, Kim KH, Jang YH, Lee JH, Yoo IH (2011) Investigation of CO2 behaviour and study on design of optimal injection into Gorae-V aquifer. Environ Earth Sci. doi:10.1007/s12665-011-1001-4

  • Thibeau S, Mucha V (2011) Have we overestimated saline aquifer CO2 storage capacity? Oil gas Sci Technol-IFP Energies nouvelles 66(1):81–92

  • US Department of Energy (2008) Methodology for development of geologic storage estimates for carbon dioxide. http://www.netl.doe.gov/technologies/carbon_seq/refshelf/methodology2008.pdf. Accessed 01 February 2011

  • van der Meer LGH, Yavuz F (2009) CO2 storage capacity calculations for the Dutch subsurface. Energy Procedia 1:2615–2622

    Article  Google Scholar 

  • Yamamoto H, Doughty C (2011) Investigation of gridding effects for numerical simulations of CO2 geologic sequestration. Int J Greenh Gas Control (in press). doi:10.1016/j.ijggc.2011.02.007

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geological storage on regional groundwater flow. Int J Greenh Gas Control 3:586–599

    Article  Google Scholar 

  • Yang F, Bai B, Dunn-Norman S (2011) Modeling the effects of completion techniques and formation heterogeneity on CO2 sequestration in shallow and deep saline aquifers. Environ Earth Sci. doi:10.1007/s12665-011-0908-0

Download references

Acknowledgments

We thank Fabian Jähne for compiling Fig. 1. Gillian Pickup has helped with setting up the relative permeability and capillary pressure curves. This study has been initiated jointly by Germany’s Federal Ministry of Economics and Technology and the Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, F., Walter, L., Class, H. et al. The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ Earth Sci 65, 2037–2049 (2012). https://doi.org/10.1007/s12665-011-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1184-8

Keywords

Navigation