Skip to main content
Log in

Melanoma segmentation using bio-medical image analysis for smarter mobile healthcare

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Dermoscopy is an excellent method of detecting melanoma in its early stages. Skin is the principal organ of human body. It covers bones, muscles and all parts of the body. Melanoma is rare, but it is the most dangerous form of skin cancer. It is curable if it is detectedin its early stages. Digital dermoscopy help dermatologists in theexamination of cancerous skin lesions. It enables doctors to capture microscopic images of moles by using amobile phone, corresponding application or any handy scope device. Segmentation is used to divide the image into different segments. Segmentation, classification and feature extraction are the three fundamental stages of arecognition system that helps in matching the analysis of skin lesion. Melanoma occurs due to the presence of Melanocytes in the body. With the use of dermoscopy, the dermatologists can examine individual lesions more closely. In our paper, we have proposed an approach that can automatically preprocess the image and then segment the lesion.The gradient magnitude of the image is calculatedto filter the images. We have marked the foreground objects to segment the lesion from background precisely. The proposed technique is tested on European dataset of dermoscopic images. Results of segmented images are compared with other competitors to exhibit the superiority of the recommended approach. Matlab 2016a is used for successful simulation of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abbas Q, Fondon I, Rashid M (2011a) “Unsupervised skin” lesions border detection via two-dimensional image analysis. Comput Methods Prog Biomed 104(3):e1–e15

    Article  Google Scholar 

  • Abbas Q, Fondón I, Rashid M (2011b) Unsupervised skinlesions border detection via two-dimensional image analysis. Comput Methods Prog Biomed 104(3):e1–e15

    Article  Google Scholar 

  • Abbas Q, Garcia IF, Emre Celebi M, Ahmad W, Mushtaq Q (2013) A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 19(1):e490–e497

    Article  Google Scholar 

  • Abuzaghleh O, Barkana BD, Faezipour M (2015) Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J Translat Eng Health Med 3:1–12

    Article  Google Scholar 

  • Akram MU, Tariq A, Khalid S, Javed MY, Abbas S, Yasin UU (2015) Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Aust Phys Eng Sci Med 38(4):643–655

    Article  Google Scholar 

  • Akram T, Khan MA, Sharif M, Yasmin M (2018) Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-018-1051-5

    Google Scholar 

  • Alendar F, Helppikangas H (2008) Digital dermoscopy-new diagnostics method of analysis on skin melanoma changes. Acta Inform Med 16:46

    Google Scholar 

  • Argenziano G, Soyer PH, De VG, Carli P, Delfino M (2002) Interactive atlas of dermoscopy CD. RA Medical Publishing and New Media, Milan

    Google Scholar 

  • Barata C, Marques JS, Celebi ME (2013) Towards an automatic bag-of-features model for the classification of dermoscopy images: the influence of segmentation. In: 8th international symposium on image and signal processing and analysis (ISPA) IEEE, pp 274279

  • Barata RC, Ruela M, Francisco M, Mendona T, Marques J (2014). Two systems for the detection of melanomas in dermoscopy images using texture and color features. EEE Syst J 8:965–979

    Google Scholar 

  • Celebi ME, Aslandogan YA, Stoecker WV, Iyatomi H, Oka H, Chen X (2007) Unsupervised border detection in dermoscopy images. Skin Res Technol 13(4):454–462

    Article  Google Scholar 

  • Celebi ME, Kingravi HA, Iyatomi H et al (2008) Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353

    Article  Google Scholar 

  • Chung K, Hyun Y, Choe Do-E (2018) Ambient context-based modeling for health risk assessment using deep neural network. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-018-1033-7

    Google Scholar 

  • Emre Celebi M, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G (2015) A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy image analysis. CRC Press, Boca Raton, pp 97–129

    Chapter  Google Scholar 

  • Farhan M, Aslam M, Jabbar S, Khalid S, Kim M (2015) Real-time imaging based assessment model for improving teaching performance and student experience in elearning. J Real-Time Image Process Springer 13:491–504

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gonzalez C, Woods RE, Eddins SL(2007) Digital image processing using Matlab, 2nd edn. Prentice Hall, New York

    Google Scholar 

  • Gonzalez RC, Woods ER, Eddins SL (2009) Morphological reconstruction. Gatesmark Publishing, Knoxville

    Google Scholar 

  • Jamil U, Akram MU, Khalid S, Abbas S, Saleem K (2016) Computer based dermoscopic Melanoma and Nevus image enhancement and segmentation. BioMed Res Int 2016:2082589. https://doi.org/10.1155/2016/2082589

    Google Scholar 

  • Jmail U, Khalid S (2015) Analysis of valuable techniques and algorithms used in automated skin lesion recognition systems. Int J Privacy Health Inf Manag 3(2):95–111

    Google Scholar 

  • Khalid S, Sajjad S, Jabbar S, Chang H (2015) Accurate and efficient shape matching approach using vocabularies of multi-feature space representations. J Real-Time Image Process Springer 13:449–465 (ISSN: 1861-8200)

    Article  Google Scholar 

  • Khalid S et al (2016) Segmentation of skin lesion using Cohen–Daubechies–Feauveau biorthogonal wavelet. SpringerPlus 5:1603. https://doi.org/10.1186/s40064-016-3211-4

    Article  Google Scholar 

  • Khalid S, Sabir B, Jabbar S, Naveen C (2017) Precise shape matching of large shape datasets using hybrid approach. J Parallel Distrib Comput Elsevier 110:16–30

    Article  Google Scholar 

  • Lakmini P, Malasinghe N. Ramzan K, Dahal (2017) Remote patient monitoring: a comprehensive study. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-017-0598-x

    Google Scholar 

  • Raja NSMadhava, Fernandes SL, Satapathy ND,SC, Rajinikanth V (2018) Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-018-0854-8

    Google Scholar 

  • Rastgoo M, Lemaitre G, Morel O, Massich J, Garcia R et al (2016) Classification of melanoma lesions using sparse coded features and random forests. SPIE Medical Imaging, San Diego, United States

    Google Scholar 

  • Razzaq S, Khalid S (2012) Frameworks for multivariate mmediods based modeling and classification in Euclidean and general feature spaces. Pattern Recogn 45(3):1092–1103

    Article  MATH  Google Scholar 

  • Ruela M, Barata C, Marques JS (2014) What is the role of color symmetry in the detection of melanomas. In: Computer vision techniques for the diagnosis of skin cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39608-3_3

    Google Scholar 

  • Sadeghi M, Lee TK, McLean DI, Lui H, Atkins MS (2013) Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans Med Imaging 32(5):849–861

    Article  Google Scholar 

  • Silveira M, Nascimento JC, Marques JS, Marçal AR, Mendonça T, Yamauchi S, Maeda J, Rozeira J (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Sign Proces 3(1):35–45

    Article  Google Scholar 

  • Sumithra R, Suhil M, Guru DS (2015) Segmentation and classification of skin lesions for disease diagnosis. International conference on advanced computing technologies and applications (ICACTA)

  • Sural S, Qian G, Pramanik S (2002) Segmentation and histogram generation using the HSV color space for image retrieval. IEEE international conference on image processing (ICIP). Marker-Control Watershed Segmentation, Mathworks

  • Usman Akram M, Khalid S, Tariq A, Younus Javed M (2013) Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Comput Med Imaging Graph 37:346–357

    Article  Google Scholar 

  • Zapirain BG, Arroyo JLG (2014) Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comput Biol Med 44:144–157

    Article  Google Scholar 

  • Zhou H, Schaefer G, Sadka AH, Celebi ME (2009) Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE J Sel Top Sign Proces 3(1):26–34

    Article  Google Scholar 

  • Zhou H, Li X, Schaefer G, Celebi ME, Miller P (2013) Mean shift based gradient vector ow for image segmentation. Comput Vis Image Underst 117(9):1004–1016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzma Jamil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, U., Sajid, A., Hussain, M. et al. Melanoma segmentation using bio-medical image analysis for smarter mobile healthcare. J Ambient Intell Human Comput 10, 4099–4120 (2019). https://doi.org/10.1007/s12652-019-01218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01218-0

Navigation