Skip to main content
Log in

Environmental Impact Associated with Oil and Grease and Their Emerging Mitigation Strategies

  • Review article
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A large volume of traditional crude oil is still transported through the ocean from production sites to utilization areas around the world. Unconventional petroleum products also cross pelagic natural habitats: for example, diluted bitumen from Canada's oil sands is transported through the Pacific coast to the USA and Asia. Oil and grease (O&G) concentrations in industrial wastewaters and the environment have been reported as rising, with increasing negative effects on the environment. The primary sources of O&G contaminations in aquatic and terrestrial environments are use of O&G in high-demand oil-processed foods, establishment and expansion of oil refinery and petrochemical plants around the world, and spills of O&G into environment during transportation. In most cases, O&G may be cleaned up by the environment's natural processes (such as photooxidation, biodegradation, and evaporation). The bulk oil is removed by naturally existing bacterial populations via one of the several oil weathering methods, which is why bioremediation has gained a lot of attention. Thus, with an ongoing need to evaluate the toxicological effects of chronic and disastrous petroleum spills on marine wildlife, several microorganisms capable of degrading O&G have been identified and may be potential candidates for bioaugmentation products. Therefore, this review focuses on the potential of using microbial candidates as an effective solution to remove the presence of O&G in various wastewaters and soil environments. The review also summarizes the current understanding of the extent and effects of O&G as well as hydrocarbon spills in aquatic and terrestrial environments, the function of microorganisms on degradation of these O&G, and current gaps in knowledge.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Liew, Y.X., Chan, Y.J., Manickam, S., Chong, M.F., Chong, S., Tiong, T.J., Lim, J.W., Pan, G.T.: Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total. Environ. 713, 136373 (2020). https://doi.org/10.1016/j.scitotenv.2019.136373

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Feng, S., Hao Ngo, H., Guo, W., Woong Chang, S., Duc Nguyen, D., Cheng, D., Varjani, S., Lei, Z., Liu, Y.: Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. Bioresour. Technol. 335, 125278 (2021). https://doi.org/10.1016/j.biortech.2021.125278

    Article  CAS  PubMed  Google Scholar 

  3. Sayed, K., Baloo, L., Kutty, S.R.B.M., Makba, F., Yalcinkaya, S., Malina, J.F., Baena, A., Orjuela, A., Rakshit, S.K., Clark, J.H., Marchut-Mikolajczyk, O., Drożdżyński, P., Struszczyk-Świta, K., Agabo-García, C., Solera, R., Pérez, M., Lim, B.K.H., Thian, E.S., Wu, L.J., Kobayashi, T., Kuramochi, H., Li, Y.Y., Xu, K.Q., Lv, Y., Wallace, T., Gibbons, D., O’Dwyer, M., Curran, T.P., Salama, E.S., Saha, S., Kurade, M.B., Dev, S., Chang, S.W., Jeon, B.H., Haselroth, K.J., Wilke, P., Dalla Costa, I.M., Lustoza Rotta, V.M., Rosado, A.F., Hermes, E., Shakourifar, N., Krisa, D., Eskicioglu, C., Mouneimne, A.H., Carrère, H., Bernet, N., Delgenès, J.P., Li, C., Champagne, P., Anderson, B.C., Solé-Bundó, M., Garfí, M., Ferrer, I., Mendoza-Espinosa, L., Stephenson, T., Nzila, A., Thukair, A., Sankara, S., Abdur Razzak, S., Eregie, S.B., Jamal-Ally, S.F., Tzirita, M., Papanikolaou, S., Quilty, B., Shon, H.K., Tian, D., Kwon, D.Y., Jin, C.S., Lee, T.J., Chung, W.J., Tzirita, M., Papanikolaou, S., Chatzifragkou, A., Quilty, B., Verma, J.P., Jaiswal, D.K., Nowak, P., Kucharska, K., Kamiński, M., Sanghamitra, P., Mazumder, D., Mukherjee, S., Affandi, I.E., Suratman, N.H., Abdullah, S., Ahmad, W.A., Zakaria, Z.A., Cammarota, M.C., Freire, D.M.G., Feng, S., Hao Ngo, H., Guo, W., Woong Chang, S., Duc Nguyen, D., Cheng, D., Varjani, S., Lei, Z., Liu, Y., Singh, H., Bhardwaj, N., Arya, S.K., Khatri, M., Wallace, T., Gibbons, D., O’Dwyer, M., Curran, T.P., Tzirita, M., Papanikolaou, S., Quilty, B., Liew, Y.X., Chan, Y.J., Manickam, S., Chong, M.F., Chong, S., Tiong, T.J., Lim, J.W., Pan, G.T., Al-Hawash, A.B., Dragh, M.A., Li, S., Alhujaily, A., Abbood, H.A., Zhang, X., Ma, F., Adetunji, A.I., Olaniran, A.O., Negi, S., Kumar, S., Abass, O., A., Jameel, A.T., Muyubi, S.A., Abdul Karim, M.I., Alam, A.M.Z., Chandra, P., Enespa, Singh, R., Arora, P.K., He, X., Zhang, Q., Cooney, M.J., Yan, T., Shende, A.D., Pophali, G.R.: International evolution of fat, oil and grease (FOG) waste management – A review. Bioresour. Technol. 187, 424–435 (2021). https://doi.org/10.1016/j.jenvman.2016.11.003

    Article  Google Scholar 

  4. Singh, H., Bhardwaj, N., Arya, S.K., Khatri, M.: Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environ. Nanotechnology, Monit. Manag (2020). https://doi.org/10.1016/j.enmm.2020.100305

    Article  Google Scholar 

  5. Sayed, K., Baloo, L., Kutty, S.R.B.M., Makba, F.: Potential biodegradation of Tapis Light Crude Petroleum Oil, using palm oil mill effluent final discharge as biostimulant for isolated halotolerant Bacillus strains. Mar. Pollut. Bull. 172, 112863 (2021). https://doi.org/10.1016/j.marpolbul.2021.112863

    Article  CAS  PubMed  Google Scholar 

  6. Crosby, S., Fay, R., Groark, C., Kani, A., Smith, J., Sullivan, T.: Transporting Alberta’s oil sands products: defining the issues and assessing the risks. NOAA technical memorandum NOS OR&R 44. 153 (2013). https://doi.org/10.13140/2.1.1893.0240

  7. Tzirita, M., Papanikolaou, S., Chatzifragkou, A., Quilty, B.: Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. and Pseudomonas putida. Eng. Life Sci. 18, 932–942 (2018). https://doi.org/10.1002/elsc.201800067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zaideen, I.M., Hamid, S.A.: International legal framework for the prevention of vessel-source marine pollution: A study of the straits of Malacca and Singapore. J. Marit. Res. 16, 27–33 (2019)

    Google Scholar 

  9. Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y., Jeng, Y.T.: Oilywastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities. Water (2021). https://doi.org/10.3390/w13070980

    Article  Google Scholar 

  10. Dawoud, H.D., Saleem, H., Alnuaimi, N.A., Zaidi, S.J.: Characterization and treatment technologies applied for produced water in Qatar. Water (2021). https://doi.org/10.3390/w13243573

    Article  Google Scholar 

  11. Hedar, Y., Budiyono: Pollution Impact and Alternative Treatment for Produced Water. E3S Web Conf. 31, 1–12 (2018). https://doi.org/10.1051/e3sconf/20183103004

  12. Iskandar, M.J., Baharum, A., Anuar, F.H., Othaman, R.: Palm oil industry in South East Asia and the effluent treatment technology—A review. Environ. Technol. Innov. 9, 169–185 (2018). https://doi.org/10.1016/j.eti.2017.11.003

    Article  Google Scholar 

  13. Hossain, M.S., Omar, F., Asis, A.J., Bachmann, R.T., Islam Sarker, M.Z., Ab Kadir, M.O.: Effective treatment of palm oil mill effluent using FeSO4.7H2O waste from titanium oxide industry: Coagulation adsorption isotherm and kinetics studies. J. Clean. Prod. 219, 86–98 (2019). https://doi.org/10.1016/j.jclepro.2019.02.069

    Article  CAS  Google Scholar 

  14. Liew, W.L., Kassim, M.A., Muda, K., Loh, S.K., Affam, A.C.: Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. J. Environ. Manage. 149, 222–235 (2015). https://doi.org/10.1016/j.jenvman.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  15. Akhbari, A., Kutty, P.K., Chuen, O.C., Ibrahim, S.: A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment. Environ. Eng. Res. 25, 212–221 (2020). https://doi.org/10.4491/eer.2018.452

    Article  Google Scholar 

  16. Soo, P.L., Bashir, M.J.K., Wong, L.P.: Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives. J. Environ. Manage. 320, 115750 (2022). https://doi.org/10.1016/j.jenvman.2022.115750

    Article  CAS  PubMed  Google Scholar 

  17. Hajfarajollah, H., Eslami, P., Mokhtarani, B., Noghabi, K.A.: Biosurfactants from probiotic bacteria: A review. Biotechnol. Appl. Biochem. 65, 768–783 (2018). https://doi.org/10.1002/bab.1686

    Article  CAS  PubMed  Google Scholar 

  18. Adetunji, A.I., Olaniran, A.O.: Treatment of industrial oily wastewater by advanced technologies: a review. Appl Water Sci 11, 1–19 (2021). https://doi.org/10.1007/s13201-021-01430-4

    Article  CAS  Google Scholar 

  19. Hasan, F., Shah, A.A., Hameed, A.: Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235–251 (2006). https://doi.org/10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  20. Chandra, P., Enespa, S., R., Arora, P.K.: Microbial lipases and their industrial applications A comprehensive review. Microb. Cell Fact. (2020). https://doi.org/10.1186/s12934-020-01428-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Demirkan, E., Aybey Çetinkaya, A., Abdou, M.: Lipase from new isolate bacillus cereus ata179: Optimization of production conditions, partial purification, characterization and its potential in the detergent industry. Turkish J. Biol. 45, 287–300 (2021). https://doi.org/10.3906/biy-2101-22

    Article  CAS  Google Scholar 

  22. Gao, P., Su, Y., Zhang, W., Pang, X., Xie, N., Zhang, M., Lv, J., Zhang, S.: Chemical and flavor characteristics of enzyme-modified cheese made by two-stage processing. Gels. 8, 1–13 (2022). https://doi.org/10.3390/gels8030160

    Article  CAS  Google Scholar 

  23. Skoczinski, P., Volkenborn, K., Fulton, A., Bhadauriya, A., Nutschel, C., Gohlke, H., Knapp, A., Jaeger, K.E.: Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis. Microb. Cell Fact. 16, 1–14 (2017). https://doi.org/10.1186/s12934-017-0772-z

    Article  CAS  Google Scholar 

  24. Sillman, J., Nygren, L., Kahiluoto, H., Ruuskanen, V., Tamminen, A., Bajamundi, C., Nappa, M., Wuokko, M., Lindh, T., Vainikka, P., Pitkänen, J.P., Ahola, J.: Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Glob. Food Sec. 22, 25–32 (2019). https://doi.org/10.1016/j.gfs.2019.09.007

    Article  Google Scholar 

  25. Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A., Mathew, A.K., Madhavan, A., Rebello, S., Pandey, A.: Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56, 16–30 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fibriana, F., Upaichit, A., Cheirsilp, B.: Statistical optimization for cost-effective production of yeast-bacterium cell-bound lipases using blended oily wastes and their potential applications in biodiesel synthesis and wastewater bioremediation. Fermentation. (2022). https://doi.org/10.3390/fermentation8080411

    Article  Google Scholar 

  27. Mbachu, A.E., Chukwura, E.I., Mbachu, N.A.: Microbial degradation and transformation of organic pollutants: an eco-friendly strategy for waste mitigation. Recent Prog. Microbiol. Biotechnol. 6, 19–34 (2021). https://doi.org/10.9734/bpi/rpmb/v6/2511e

    Article  Google Scholar 

  28. Ferreira, L.M.R., Li, A.M., Serafim, T.L., Sobral, M.C., Alpoim, M.C., Urbano, A.M.: Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochim. Biophys. Acta - Mol. Basis Dis. 1866, 165887 (2020). https://doi.org/10.1016/j.bbadis.2020.165887

  29. Salam, L.B.: Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil. Bull. Natl. Res. Cent. (2018). https://doi.org/10.1186/s42269-018-0013-6

    Article  Google Scholar 

  30. Kreve, S., Reis, A.C.D.: Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn. Dent. Sci. Rev. 57, 85–96 (2021). https://doi.org/10.1016/j.jdsr.2021.05.003

    Article  PubMed  Google Scholar 

  31. Biswas, T., Banerjee, S., Saha, A., Bhattacharya, A., Chanda, C., Gantayet, L.M., Bhadury, P., Ray Chaudhuri, S.: Bacterial consortium based petrochemical wastewater treatment: from strain isolation to industrial effluent treatment. Environ. Adv. 7, 100132 (2022). https://doi.org/10.1016/j.envadv.2021.100132

    Article  CAS  Google Scholar 

  32. Wallace, T., Gibbons, D., O’Dwyer, M., Curran, T.P.: International evolution of fat, oil and grease (FOG) waste management – A review. J. Environ. Manage. 187, 424–435 (2017). https://doi.org/10.1016/j.jenvman.2016.11.003

    Article  PubMed  Google Scholar 

  33. Victor, I.A., Archibong, I.A., Andem, A.B.: The biochemical mechanisms of petroleum degradation by bacteria. Int. J. Eng. Res. 11, 1258–1275 (2020)

    Google Scholar 

  34. Shin, J., Kim, J.E., Lee, Y.W., Son, H.: Fungal cytochrome p450s and the p450 complement (Cypome) of fusarium graminearum. Toxins (Basel). 10, 76–91 (2018). https://doi.org/10.3390/toxins10030112

    Article  CAS  Google Scholar 

  35. Rojo, F.: Handbook of Hydrocarbon and Lipid Microbiology. Handb. Hydrocarb. Lipid Microbiol. (2010). https://doi.org/10.1007/978-3-540-77587-4

    Article  Google Scholar 

  36. Al-Hawash, A.B., Zhang, X., Ma, F.: Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen. 8, 1–14 (2019). https://doi.org/10.1002/mbo3.619

    Article  CAS  Google Scholar 

  37. Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., Verma, M.: Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. (China) 51, 52–74 (2017). https://doi.org/10.1016/j.jes.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  38. Azubuike, C.C., Chikere, C.B., Okpokwasili, G.C.: Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32, 1–18 (2016). https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  39. Yadav, V.K., Gupta, N., Kumar, P., Dashti, M.G., Tirth, V., Khan, S.H., Yadav, K.K., Islam, S., Choudhary, N., Algahtani, A., Bera, S.P., Kim, D.H., Jeon, B.H.: Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology. Materials (Basel). (2022). https://doi.org/10.3390/ma15030953

    Article  PubMed  PubMed Central  Google Scholar 

  40. Qin, X., Sun, X., Huang, H., Bai, Y., Wang, Y., Luo, H., Yao, B., Zhang, X., Su, X.: Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: Evidence for implication of carboxylate and radicals. Biotechnol. Biofuels 10, 1–13 (2017). https://doi.org/10.1186/s13068-017-0787-z

    Article  CAS  Google Scholar 

  41. Wang, C., Sun, H., Li, J., Li, Y., Zhang, Q.: Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77, 733–738 (2009). https://doi.org/10.1016/j.chemosphere.2009.08.028

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Elyamine, A.M., Kan, J., Meng, S., Tao, P., Wang, H., Hu, Z.: Aerobic and anaerobic bacterial and fungal degradation of pyrene: Mechanism pathway including biochemical reaction and catabolic genes. Int. J. Mol. Sci. (2021). https://doi.org/10.3390/ijms22158202

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J.H., Xue, Q.H., Gao, H., Ma, X., Wang, P.: Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J. Chem. Technol. Biotechnol. 91, 865–875 (2016). https://doi.org/10.1002/jctb.4650

    Article  CAS  Google Scholar 

  44. Jove, P., Olivella, M.A., Camarero, S., Caixach, J., Planas, C., Cano, L., De Las Heras, F.X.: Fungal biodegradation of anthracene-polluted cork: A comparative study. J. Environ. Sci. Heal. - Part A. 51, 70–77 (2016). https://doi.org/10.1080/10934529.2015.1079114

  45. El-gendi, H., Saleh, A.K., Badierah, R., Redwan, E.M., El-maradny, Y.A., El-fakharany, E.M.: A Comprehensive Insight into Fungal Enzymes : Structure , Classification , and Their Role in Mankind ’ s Challenges. (2022)

  46. Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M.H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H.: Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol. 132, 23–34 (2018). https://doi.org/10.1016/j.pbiomolbio.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  47. Canseco-Pérez, M.A., Castillo-Avila, G.M., Chi-Manzanero, B., Islas-Flores, I., Apolinar-Hernández, M.M., Rivera-Muñoz, G., Gamboa-Angulo, M., Sanchez-Teyer, F., Couoh-Uicab, Y., Canto-Canché, B.: Fungal screening on olive oil for extracellular triacylglycerol lipases: Selection of a Trichoderma harzianum strain and genome wide search for the genes. Genes (2018). https://doi.org/10.3390/genes9020062

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baena, A., Orjuela, A., Rakshit, S.K., Clark, J.H.: Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives. Chem. Eng. Process. - Process Intensif. (2022). https://doi.org/10.1016/j.cep.2022.108930

    Article  Google Scholar 

  49. Akhter, K., Karim, I., Aziz, B., Bibi, A., Khan, J., Akhtar, T.: Optimization and characterization of alkaliphilic lipase from a novel Bacillus cereus NC7401 strain isolated from diesel fuel polluted soil. PLoS ONE 17, e0273368 (2022). https://doi.org/10.1371/journal.pone.0273368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chapman, J., Ismail, A.E., Dinu, C.Z.: Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8, 20–29 (2018). https://doi.org/10.3390/catal8060238

    Article  CAS  Google Scholar 

  51. Li, Y., Li, G., Sun, H., Chen, Y.: Characterization of a novel sn1,3 lipase from Ricinus communis L. suitable for production of oleic acid-palmitic acid-glycerol oleate. Sci. Rep. 11, 1–12 (2021). https://doi.org/10.1038/s41598-021-86305-z

    Article  CAS  Google Scholar 

  52. Kumar, A., Dhar, K., Kanwar, S.S., Arora, P.K.: Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online. 18, 1–11 (2016). https://doi.org/10.1186/s12575-016-0033-2

    Article  CAS  Google Scholar 

  53. Carey, J.S., McCann, E.: Lipase-catalyzed regioselective ester hydrolysis as a key step in an alternative synthesis of a buprenorphine pro-drug. Org. Process Res. Dev. 23, 771–774 (2019). https://doi.org/10.1021/acs.oprd.9b00026

    Article  CAS  Google Scholar 

  54. Kawiński, A., Miklaszewska, M., Stelter, S., Głąb, B., Banaś, A.: Lipases of germinating jojoba seeds efficiently hydrolyze triacylglycerols and wax esters and display wax ester-synthesizing activity. BMC Plant Biol. 21, 1–13 (2021). https://doi.org/10.1186/s12870-020-02823-4

    Article  CAS  Google Scholar 

  55. Verma, J.P., Jaiswal, D.K.: Book Review: Advances in Biodegradation and Bioremediation of Industrial Waste. Front. Microbiol. 6, 2015–2016 (2016). https://doi.org/10.3389/fmicb.2015.01555

    Article  Google Scholar 

  56. Diomandé, S.E., Nguyen-The, C., Guinebretière, M.H., Broussolle, V., Brillard, J.: Role of fatty acids in Bacillus environmental adaptation. Front. Microbiol. 6, 1–20 (2015). https://doi.org/10.3389/fmicb.2015.00813

    Article  Google Scholar 

  57. Hassan, N., Anesio, A.M., Rafiq, M., Holtvoeth, J., Bull, I., Haleem, A., Shah, A.A., Hasan, F.: Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria. Front. Microbiol. 11, 1–10 (2020). https://doi.org/10.3389/fmicb.2020.00824

    Article  Google Scholar 

  58. De Carvalho, C.C.C.R., Caramujo, M.J.: The various roles of fatty acids. Molecules 23, 2583 (2018). https://doi.org/10.3390/molecules23102583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Vos, W.M., Tilg, H., Van Hul, M., Cani, P.D.: Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022). https://doi.org/10.1136/gutjnl-2021-326789

    Article  CAS  PubMed  Google Scholar 

  60. Asif, Z., Chen, Z., An, C., Dong, J.: Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. J. Mar. Sci. Eng. (2022). https://doi.org/10.3390/jmse10060762

    Article  Google Scholar 

  61. Little, D.I., Sheppard, S.R.J., Hulme, D.: A perspective on oil spills: What we should have learned about global warming. Ocean Coast. Manag. 202, 105509 (2021). https://doi.org/10.1016/j.ocecoaman.2020.105509

    Article  Google Scholar 

  62. Almeda, R., Baca, S., Hyatt, C., Buskey, E.J.: Ingestion and sublethal effects of physically and chemically dispersed crude oil on marine planktonic copepods. Ecotoxicology 23, 988–1003 (2014). https://doi.org/10.1007/s10646-014-1242-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quigg, A., Parsons, M., Bargu, S., Ozhan, K., Daly, K.L., Chakraborty, S., Kamalanathan, M., Erdner, D., Cosgrove, S., Buskey, J., Gulf, F., South, F.B., Myers, F.: Marine phytoplankton responses to oil and dispersant exposures : Knowledge gained since the Deepwater Horizon oil spill. Mar. Pollut. Bull. 164, 112074 (2021). https://doi.org/10.1016/j.marpolbul.2021.112074

    Article  CAS  PubMed  Google Scholar 

  64. Cresci, A., Paris, C.B., Browman, H.I., Skiftesvik, A.B., Shema, S., Bjelland, R., Durif, C.M.F., Foretich, M., Di Persia, C., Lucchese, V., Vikebø, F.B., Sørhus, E.: Effects of exposure to low concentrations of oil on the expression of cytochrome P4501a and routine swimming speed of atlantic haddock (Melanogrammus aeglefinus) Larvae in Situ. Environ. Sci. Technol. 54, 13879–13887 (2020). https://doi.org/10.1021/acs.est.0c04889

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arum, L.A.S., Pawestri, Y.E., Zaki, M., Mahendratha, M.H.W., Awaliya, N., Pratama, M.M.A.: An overview on carbon nanotubes as innovative absorbent for marine oil spill. IOP Conf. Ser. Earth Environ. Sci. (2021). https://doi.org/10.1088/1755-1315/847/1/012034

    Article  Google Scholar 

  66. Anyadiegwu, C.I.C., Uwaezuoke, N.: Benthic studies and environmental assessment in the oil producing area of the niger delta. Am. J. Environ. Prot. 3, 37–43 (2015)

    CAS  Google Scholar 

  67. Liversage, K., Kotta, J., Pajusalu, L.: Effectiveness of common benthic macrofaunal sampling methodology in boulder and cobble reefs. J. Exp. Mar. Bio. Ecol. 530–531, 151413 (2020). https://doi.org/10.1016/j.jembe.2020.151413

    Article  Google Scholar 

  68. de la Huz, R., Lastra, M., López, J.: Oil Spills. Encycl. Environ. Heal. 251–255 (2011). https://doi.org/10.1016/B978-0-444-52272-6.00568-7

  69. Markowitz, G., Rosner, D.: Monsanto , PCBs , and the creation of a “ world ‑ wide ecological problem .” Palgrave Macmillan UK (2018)

  70. Aldavood, S.J., Abbott, L.C., Evans, Z.R., Gri, D.J., Lee, M.D., Quintero-arevalo, N.M., Villalobos, A.R.: Effect of cadmium and nickel exposure on early development in Zebrafish ( Danio rerio ) Embryos. Water 12, 3005 (2020)

    Article  CAS  Google Scholar 

  71. Sandrine, I., Ntsama, B., Ayuk, B., Judith, J., Takadong, T., Medoua, G., Kansci, G.: Characteristics of fish farming practices and agrochemicals usage therein in four regions of Cameroon q. Egypt. J. Aquat. Res. 44, 145–153 (2018). https://doi.org/10.1016/j.ejar.2018.06.006

    Article  Google Scholar 

  72. Khursigara, A.J., Rowsey, L.E., Johansen, J.L., Esbaugh, A.J.: Behavioral Changes in a Coastal Marine Fish Lead to Increased Predation Risk Following Oil Exposure. (2021). https://doi.org/10.1021/acs.est.0c07945

    Article  Google Scholar 

  73. Valgaeren, B., Théron, L., Croubels, S., Devreese, M., De Baere, S., Van Pamel, E., Daeseleire, E., De Boevre, M., De Saeger, S., Vidal, A., Di Mavungu, J.D., Fruhmann, P., Adam, G., Callebaut, A., Bayrou, C., Frisée, V., Rao, A.S., Knapp, E., Sartelet, A., Pardon, B., Deprez, P., Antonissen, G.: The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Arch. Toxicol. 93, 293–310 (2019). https://doi.org/10.1007/s00204-018-2368-8

    Article  CAS  PubMed  Google Scholar 

  74. Bender, M.L., Giebichenstein, J., Teisrud, R.N., Laurent, J., Frantzen, M., Meador, J.P., Sørensen, L., Hansen, B.H., Reinardy, H.C., Laurel, B., Nahrgang, J.: Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-87932-2

    Article  PubMed  PubMed Central  Google Scholar 

  75. Laurel, B.J., Louise, A., Tiffany, L., Nathaniel, L., John, P., Laurel, B.J., Copeman, L.A., Iseri, P., Spencer, M.L., Hutchinson, G., Nordtug, T., Donald, C.E., Meier, S., Allan, S.E., Boyd, D.T., Ylitalo, G.M., Cameron, J.R., French, B.L., Linbo, T.L., Scholz, N.L., Incardona, J.P.: Embryonic crude oil exposure impairs growth and lipid allocation in a keystone arctic forage fish embryonic crude oil exposure impairs growth and lipid allocation in a keystone arctic forage fish. ISCIENCE. 19, 1101–1113 (2019). https://doi.org/10.1016/j.isci.2019.08.051

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tran, T., Yazdanparast, A., Suess, E.A.: Effect of oil spill on birds: a graphical assay of the deepwater horizon oil spill’s impact on birds. Comput. Stat. 29, 133–140 (2014). https://doi.org/10.1007/s00180-013-0472-z

    Article  MathSciNet  Google Scholar 

  77. Honda, M., Suzuki, N. (2020) Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health. 17, 1363. https://doi.org/10.3390/ijerph17041363

  78. Paruk, J.D., Stenhouse, I.J., Sigel, B.J., Adams, E.M., Montevecchi, W.A., Evers, D.C., Gilbert, A.T., Duron, M., Long, D., Hemming, J., Tuttle, P.: Oiling of American white pelicans, common loons, and northern gannets in the winter following the Deepwater Horizon (MC252) oil spill. Environ. Monit. Assess. (2019). https://doi.org/10.1007/s10661-019-7925-y

    Article  Google Scholar 

  79. Favilla, A.B., Costa, D.P.: Thermoregulatory strategies of diving air-breathing marine vertebrates: a review. Front. Ecol. Evol. (2020). https://doi.org/10.3389/fevo.2020.555509

    Article  Google Scholar 

  80. Boersma, P.D., Clark, J.A.: Seabird recovery following the exxon valdez oil spill: why was murre recovery controversial? Int. Oil Spill Conf. Proc. 2001, 1521–1526 (2001). https://doi.org/10.7901/2169-3358-2001-2-1521

    Article  Google Scholar 

  81. Black, T.A., Hanson, M.L., Palace, V.P., Rodriguez-Gil, J.L.: Surface-dwelling aquatic insects in low-energy freshwater environments are highly impacted by oil spills and the surface washing agent corexit EC9580A used in oil spill response. Environ. Toxicol. Chem. 40, 1298–1307 (2021). https://doi.org/10.1002/etc.4976

    Article  CAS  PubMed  Google Scholar 

  82. Ruberg, E.J., Elliott, J.E., Williams, T.D.: Review of petroleum toxicity and identifying common endpoints for future research on diluted bitumen toxicity in marine mammals. Ecotoxicology 30, 537–551 (2021). https://doi.org/10.1007/s10646-021-02373-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wells, R.S., Schwacke, L.H., Rowles, T.K., Balmer, B.C., Zolman, E., Speakman, T., Townsend, F.I., Tumlin, M.C., Barleycorn, A., Wilkinson, K.A.: Ranging patterns of common bottlenose dolphins Tursiops truncatus in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 159–180 (2017). https://doi.org/10.3354/esr00732

    Article  Google Scholar 

  84. Myers, H.J., Olsen, D.W., Matkin, C.O., Horstmann, L.A., Konar, B.: Passive acoustic monitoring of killer whales (Orcinus orca) reveals year-round distribution and residency patterns in the Gulf of Alaska. Sci. Rep. 11, 1–14 (2021). https://doi.org/10.1038/s41598-021-99668-0

    Article  CAS  Google Scholar 

  85. Zychowski, G.V., Godard-Codding, C.A.J.: Reptilian exposure to polycyclic aromatic hydrocarbons and associated effects. Environ. Toxicol. Chem. 36, 25–35 (2017). https://doi.org/10.1002/etc.3602

    Article  CAS  PubMed  Google Scholar 

  86. Jung, S., Chau, T.V., Kim, M., Na, W.-B.: Artificial seaweed reefs that support the establishment of submerged aquatic vegetation beds and facilitate ocean macroalgal afforestation: a review. J. Mar. Sci. Eng. 10, 1184 (2022). https://doi.org/10.3390/jmse10091184

    Article  Google Scholar 

  87. Michel, J.: Oil Spill Effects Literature Study of Spills of Greater than 20 , 000 Barrels of Crude Oil , Condensate , or Diesel US Department of the Interior. (2022)

  88. Ward, C.H. (ed.): Habitats and biota of the Gulf of Mexico Before the deepwater horizon oil spill. Springer, New York, New York (2017)

    Google Scholar 

  89. Begum, N., Hasanuzzaman, M., Li, Y., Akhtar, K., Zhang, C., Zhao, T.: Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants. 11, 1–23 (2022). https://doi.org/10.3390/antiox11030498

    Article  CAS  Google Scholar 

  90. Kuyukina, M.S., Krivoruchko, A.V., Ivshina, I.B.: Advanced bioreactor treatments of hydrocarbon-containing wastewater. Appl. Sci. 10, 1–19 (2020). https://doi.org/10.3390/app10030831

    Article  CAS  Google Scholar 

  91. Solé-Bundó, M., Garfí, M., Ferrer, I.: Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Bioresour. Technol. 298, 122563 (2020). https://doi.org/10.1016/j.biortech.2019.122563

    Article  CAS  PubMed  Google Scholar 

  92. Grebe, M., Ruland, M.: Influence of mechanical, thermal, oxidative and catalytic processes on thickener structure and thus on the service life of rolling bearings. Lubricants. (2022). https://doi.org/10.3390/lubricants10050077

    Article  Google Scholar 

  93. Eze, M.O., Thiel, V., Hose, G.C., George, S.C., Daniel, R.: Bacteria-plant interactions synergistically enhance biodegradation of diesel fuel hydrocarbons. Commun. Earth Environ. 3, 1–10 (2022). https://doi.org/10.1038/s43247-022-00526-2

    Article  Google Scholar 

  94. Ragel, K.B.: Enzymatic synthesis of biodiesel from high free fatty acid feedstock using a recombinant Rhizopus oryzae lipase. Tdx.Cat. 195 (2018)

  95. Rasti, A., Memariani, M., Ali Riahi, M.: Investigation of enterobacter aerogenes effects on heavy oil from biological degradation aspects by GC*GC technique. Int. J. Petrochemical Sci. Eng. 4, 47–52 (2019)

    Article  Google Scholar 

  96. Liu, Y., Li, C., Huang, L., He, Y., Zhao, T., Han, B., Jia, X.: Combination of a crude oil-degrading bacterial consortium under the guidance of strain tolerance and a pilot-scale degradation test. Chinese J. Chem. Eng. 25, 1838–1846 (2017). https://doi.org/10.1016/j.cjche.2017.02.001

    Article  Google Scholar 

  97. Creencia, A.R., Mendoza, B.C., Migo, V.P., Monsalud, R.G.: Degradation of residual Jatropha oil by a promising lipase-producing bacterial consortium. Philipp. J. Sci. 143, 73–79 (2014)

    Google Scholar 

  98. Parthipan, P., Elumalai, P., Sathishkumar, K., Sabarinathan, D., Murugan, K., Benelli, G., Rajasekar, A.: Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. 3 Biotech. 7, 1–17 (2017). https://doi.org/10.1007/s13205-017-0902-7

    Article  Google Scholar 

  99. Liu, H., Yang, G., Jia, H., Sun, B.: Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 Isolated from an Oil-Contaminated Lake Wetland. Processes. 10, 1–15 (2022). https://doi.org/10.3390/pr10020307

    Article  CAS  Google Scholar 

  100. Kurade, M.B., Saha, S., Kim, J.R., Roh, H.S., Jeon, B.H.: Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease. Bioresour. Technol. 296, 122294 (2020). https://doi.org/10.1016/j.biortech.2019.122294

    Article  CAS  PubMed  Google Scholar 

  101. Parikh, R., D., R. Tipre, D., S. Nayak, N., R. Dave, S.: Degradation of discarded used engine oil by Pseudomonas aeruginosa DP-1 and its optimization. Int. J. Curr. Microbiol. Appl. Sci. 7, 2224–2229 (2018)

    Article  Google Scholar 

  102. Abdullah, S., Nor, F.H.M., Khamidun, M.H.: Biodegradation of oil and grease from agro-food industry by immobilised serratia marcescens sa30. Malaysian J. Anal. Sci. 25, 193–202 (2021)

    Google Scholar 

  103. Sathya, K., Nagarajan, K., Malar, C.G., G., Rajalakshmi, S., Raja Lakshmi, P.: A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Appl Water Sci 12, 1–27 (2022)

    Article  ADS  Google Scholar 

  104. Ngobeni, P.V., Gutu, L., Basitere, M., Harding, T., Ikumi, D.: Poultry slaughterhouse wastewater treatment using an integrated biological and electrocoagulation treatment system: process optimisation using response surface methodology. Sustainability. 14, 9561 (2022). https://doi.org/10.3390/su14159561

    Article  CAS  Google Scholar 

  105. Fica, Z.: Pairing of Anaerobic and Aerobic Treatment of Petroleum Wastewater. 1–27 (2017)

  106. Faiz, S.: Isolation, screening and characterization of lipase from bacterial isolates and its application in detergents and oily waste water degradation. Pure Appl. Biol. 10, 209–224 (2021). https://doi.org/10.19045/bspab.2021.100022

    Article  CAS  Google Scholar 

  107. Bhumibhamon, O., Koprasertsak, A., Funthong, S.: Biotreatment of high fat and oil wastewater by lipase producing microorganisms. Agric. Nat. Resour. 36, 261–267 (2002)

    CAS  Google Scholar 

  108. Witharana, A., Manatunge, J., Ratnayake, N., Nanayakkara, C.M., Jayaweera, M.: Rapid degradation of FOG discharged from food industry wastewater by lipolytic fungi as a bioaugmentation application. Environ. Technol. (United Kingdom) 39, 2062–2072 (2018). https://doi.org/10.1080/09593330.2017.1349837

    Article  CAS  Google Scholar 

  109. Luo, Q., Liu, Z., hua, Yin, H., Dang, Z., Wu, P. xiao, Zhu, N. wu, Lin, Z., Liu, Y.: Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human. Sci. Total. Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.135369

    Article  PubMed  PubMed Central  Google Scholar 

  110. Heidemann, M.S., Molento, C.F.M., Reis, G.G., Phillips, C.J.C.: Uncoupling meat from animal slaughter and its impacts on human-animal relationships. Front. Psychol. (2020). https://doi.org/10.3389/fpsyg.2020.01824

    Article  PubMed  PubMed Central  Google Scholar 

  111. Welz, P., Swanepoel, G., Weels, S., Le Roes-Hill, M.: Wastewater from the edible oil industry as a potential source of lipase-and surfactant-producing actinobacteria. Microorganisms. (2021). https://doi.org/10.3390/microorganisms9091987

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ahmad, T., Belwal, T., Li, L., Ramola, S., Aadil, R.M., Abdullah, Xu., Y., Zisheng, L.: Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.02.017

    Article  Google Scholar 

  113. Drewnowski, J., Remiszewska-Skwarek, A., Duda, S., Łagód, G.: Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes (2019). https://doi.org/10.3390/pr7050311

    Article  Google Scholar 

  114. Contesini, F.J., Davanço, M.G., Borin, G.P., Vanegas, K.G., Cirino, J.P.G., de Melo, R.R., Mortensen, U.H., Hildén, K., Campos, D.R., de Carvalho, P., O.: Advances in recombinant lipases: application in the pharmaceutical industry. Ind. Biocatal. Challenges Oppor. 10, 1–33 (2020)

    Google Scholar 

  115. Popoola, B.M., Olanbiwoninu, A.A., Fashogbon, R.O.: Bioremediation of vegetable oil contaminated soil with two microbial isolates. Adv. Microbiol. 12, 218–241 (2022). https://doi.org/10.4236/aim.2022.124017

    Article  CAS  Google Scholar 

  116. Szymczak, T., Cybulska, J., Podleśny, M., Frąc, M.: Various perspectives on microbial lipase production using agri-food waste and renewable products. Agric. 11, 540 (2021). https://doi.org/10.3390/agriculture11060540

    Article  CAS  Google Scholar 

  117. Hassan, S.W.M., El Latif, H.H.A., Ali, S.M.: Production of cold-active lipase by free and immobilized marine Bacillus cereus HSS: Application in wastewater treatment. Front. Microbiol. 9, 1–13 (2018). https://doi.org/10.3389/fmicb.2018.02377

    Article  Google Scholar 

  118. Diep, P., Mahadevan, R., Yakunin, A.F.: Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. (2018). https://doi.org/10.3389/fbioe.2018.00157

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pete, A.J., Bharti, B., Benton, M.G.: Nano-enhanced Bioremediation for Oil Spills: A Review. ACS ES&T Eng. 1, 928–946 (2021). https://doi.org/10.1021/acsestengg.0c00217

    Article  CAS  Google Scholar 

  120. Guan, C., Tao, Z., Wang, L., Zhao, R., Chen, X., Huang, X., Su, J., Lu, Z., Chen, X., Gu, R.: Isolation of novel Lactobacillus with lipolytic activity from the vinasse and their preliminary potential using as probiotics. AMB Express (2020). https://doi.org/10.1186/s13568-020-01026-2

    Article  PubMed  PubMed Central  Google Scholar 

  121. Behera, A.R., Veluppal, A., Dutta, K.: Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominis using response surface methodology. Environ. Sci. Pollut. Res. 26, 34277–34284 (2019). https://doi.org/10.1007/s11356-019-04304-0

    Article  CAS  Google Scholar 

  122. Vieto, S., Rojas-Gätjens, D., Jiménez, J.I., Chavarría, M.: The potential of Pseudomonas for bioremediation of oxyanions. Environ. Microbiol. Rep. 13, 773–789 (2021). https://doi.org/10.1111/1758-2229.12999

    Article  CAS  PubMed  Google Scholar 

  123. Olusesan, A.T., Azura, L.K., Abubakar, F., Hamid, N.S.A., Radu, S., Saari, N.: Phenotypic and molecular identification of a novel thermophilic Anoxybacillus species: A lipase-producing bacterium isolated from a Malaysian hotspring. World J. Microbiol. Biotechnol. 25, 1981–1988 (2009). https://doi.org/10.1007/s11274-009-0097-0

    Article  CAS  Google Scholar 

  124. Kameshwar, A.K.S., Qin, W.: Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 12, 156–171 (2016). https://doi.org/10.7150/ijbs.13537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Azhdarpoor, A., Mortazavi, B., Moussavi, G.: Oily wastewaters treatment using Pseudomonas sp. isolated from the compost fertilizer. J. Environ. Heal. Sci. Eng. 12, 1–6 (2014). https://doi.org/10.1186/2052-336X-12-77

    Article  CAS  Google Scholar 

  126. Havenga, B., Reyneke, B., Waso-Reyneke, M., Ndlovu, T., Khan, S., Khan, W.: Biological control of Acinetobacter baumannii: In vitro and in vivo activity, limitations, and combination therapies. Microorganisms (2022). https://doi.org/10.3390/microorganisms10051052

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kanmani, P., Aravind, J., Kumaresan, K.: An insight into microbial lipases and their environmental facet. Int. J. Environ. Sci. Technol. 12, 1147–1162 (2015). https://doi.org/10.1007/s13762-014-0605-0

    Article  CAS  Google Scholar 

  128. Kumari, A., Ahmad, R., Negi, S., Khare, S.K.: Biodegradation of waste grease by Penicillium chrysogenum for production of fatty acid. Bioresour. Technol. 226, 31–38 (2017). https://doi.org/10.1016/j.biortech.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  129. Tsuji, M., Yokota, Y., Shimohara, K., Kudoh, S., Hoshino, T.: An application of wastewater treatment in a cold environment and stable lipase production of antarctic basidiomycetous Yeast Mrakia blollopis. PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0059376

    Article  PubMed  PubMed Central  Google Scholar 

  130. de Oliveira, T.F., Hidálgo, M.R., Júnior, M.S.S.: Production of lipase extrated from aqueous waste: Enzymatic activity kinetics. Cienc. e Agrotecnologia. 38, 562–572 (2014). https://doi.org/10.1590/s1413-70542014000600005

    Article  Google Scholar 

  131. Giudice, L., Domenico, D., Biology, A., Ecology, M.: Handbook of hydrocarbon and lipid microbiology. Handb. Hydrocarb. Lipid Microbiol. (2010). https://doi.org/10.1007/978-3-540-77587-4

    Article  Google Scholar 

  132. Mahmoud, G.A.-E., Koutb, M.M.M., Morsy, F.M., Bagy, M.M.K.: Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. Eur. J. Biol. Res. Res. Artic. Eur. J. Biol. Res. 5, 70–77 (2015)

    CAS  Google Scholar 

  133. Singh, S.N., B.K. and S.M.: Microbial Degradation of Xenobiotics. Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)

    Book  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Lakehead University, Canada for supporting.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

BM and WQ: Creation of maps and initial draft manuscript; BM: draft manuscript, review and editing; WQ, TZ, CCX and MSR: Review and editing; WQ: Conceptualization and Methodology development.

Corresponding authors

Correspondence to Tingheng Zhu or Wensheng Qin.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtaza, B., Rahman, M.S., Xu, C.C. et al. Environmental Impact Associated with Oil and Grease and Their Emerging Mitigation Strategies. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02425-3

Keywords

Navigation