Skip to main content
Log in

Purification of Wastewater Generated from Methane Fermentation Using a Semi-Closed System with Hydroponically Grown Lettuce Plants

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As agriculture accounts for approximately 70% of global water consumption, water recycling (e.g., the use of wastewater) is required. Similar to water recycling, food recycling is a major concern in urban areas. Here, we aimed to investigate the water balance of a semi-closed system and the quality of recovered wastewater and collected water. From a semi-closed system in which lettuce plants (Lactuca sativa L.) were grown hydroponically using bio-oxidized wastewater (or digestate) from methane fermentation with food waste as the substrate, evapotranspirated water was recovered using cooling devices. The evapotranspiration and water recovery rates tended to increase with increasing photosynthetic photon flux density (PPFD). During the 24-h experiment (performed in triplicate), approximately 50% of the evapotranspirated water was harvested. The electrical conductivity, pH, and relative illuminance of the adenosine triphosphate were lower in the recovered water than in the wastewater. The NO3-N PO4-P, K, Ca, Mg, SO4-S, Fe, Mn, and Mo concentrations were also lower in the recovered water than in the wastewater. Although a long-term experiment is required to draw more explicit conclusions, these results indicate the potential of wastewater recovery systems in producing plants and generating water with low contaminant levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Data will be made available on request.

References

  1. Liu, J., Yang, H., Gosling, S.N., Kummu, M., Flörke, M., Pfister, S., Hanasaki, N., Wada, Y., Zhang, X., Zheng, C., Alcamo, J., Oki, T.: Water scarcity assessments in the past, present, and future. Earths Future. 5, 545–559 (2017). https://doi.org/10.1002/2016EF000518

    Article  Google Scholar 

  2. Magwaza, S.T., Magwaza, L.S., Odindo, A.O., Mditshwa, A.: Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Sci. Total Environ. 698, 134154 (2020). https://doi.org/10.1016/j.scitotenv.2019.134154

    Article  Google Scholar 

  3. Liu, C., Hotta, Y., Santo, A., Hengesbaugh, M., Watabe, A., Totoki, Y., Allen, D., Bengtsson, M.: Food waste in Japan: Trends, current practices and key challenges. J. Clean. Prod. 133, 557–564 (2016). https://doi.org/10.1016/J.JCLEPRO.2016.06.026

    Article  Google Scholar 

  4. Thi, N.B.D., Kumar, G., Lin, C.Y.: An overview of food waste management in developing countries: Current status and future perspective. J. Environ. Manage. 157, 220–229 (2015). https://doi.org/10.1016/j.jenvman.2015.04.022

    Article  Google Scholar 

  5. Browne, J.D., Murphy, J.D.: Assessment of the resource associated with biomethane from food waste. Appl. Energy. 104, 170–177 (2013). https://doi.org/10.1016/j.apenergy.2012.11.017

    Article  Google Scholar 

  6. Peng, W., Pivato, A.: Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valorization. 10, 465–481 (2019). https://doi.org/10.1007/s12649-017-0071-2

    Article  Google Scholar 

  7. Zhang, Y., Banks, C.J., Heaven, S.: Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manage. 104, 166–174 (2012). https://doi.org/10.1016/j.jenvman.2012.03.043

    Article  Google Scholar 

  8. Pedrero, F., Kalavrouziotis, I., Alarcón, J.J., Koukoulakis, P., Asano, T.: Use of treated municipal wastewater in irrigated agriculture—review of some practices in Spain and Greece. Agric. Water Manag. 97, 1233–1241 (2010). https://doi.org/10.1016/j.agwat.2010.03.003

    Article  Google Scholar 

  9. Meda, A., Cornel, P.: Aerated biofilter with seasonally varied operation modes for the production of irrigation water. Water Sci. Technol. 61, 1173–1181 (2010). https://doi.org/10.2166/wst.2010.059

    Article  Google Scholar 

  10. Takemura, K., Endo, R., Shibuya, T., Kitaya, Y.: Application of biogas digestate as a nutrient solution for the hydroponic culture of Chrysanthemum morifolium Ramat with rockwool substrate. Waste Biomass Valorization. 11, 2645–2650 (2020). https://doi.org/10.1007/s12649-018-00576-8

    Article  Google Scholar 

  11. Li, X., Guo, J., Dong, R., Ahring, B.K., Zhang, W.: Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci. Total Environ. 544, 774–781 (2016). https://doi.org/10.1016/j.scitotenv.2015.11.172

    Article  Google Scholar 

  12. Rehl, T., Müller, J.: Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 56, 92–104 (2011). https://doi.org/10.1016/j.resconrec.2011.08.007

    Article  Google Scholar 

  13. Lukehurst, C.T., Frost, P., Al Seadi, T.: Utilisation of digestate from biogas plants as biofertiliser, IEA Bioenergy. Paris, France. (2010). https://www.ieabioenergy.com/wp-content/uploads/2010/06/Digestate_Brochure_Revised_12-2010.pdf Accessed 10 February 2023

  14. Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., Carrère, H.: New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 8, 2600–2621 (2015). https://doi.org/10.1039/C5EE01633A

    Article  Google Scholar 

  15. Kao, C.M., Wang, J.Y., Lee, H.Y., Wen, C.K.: Application of a constructed wetland for non-point source pollution control. Water Sci. Technol. 44, 585–590 (2001). https://doi.org/10.2166/wst.2001.0884

    Article  Google Scholar 

  16. Boyden, B.H., Rababah, A.A.: Recycling nutrients from municipal wastewater. Desalination. 106, 241–246 (1996). https://doi.org/10.1016/S0011-9164(96)00114-2

    Article  Google Scholar 

  17. Germer, J., Brandt, C., Rasche, F., Dockhorn, T., Bliedung, A.: Growth of lettuce in hydroponics fed with aerobic- and anaerobic–aerobic-treated domestic wastewater. Agriculture. 13, 1529 (2023). https://doi.org/10.3390/agriculture13081529

    Article  Google Scholar 

  18. Prazeres, A.R., Rivas, J., Almeida, M.A., Patanita, M., Dôres, J., Carvalho, F.: Agricultural reuse of cheese whey wastewater treated by NaOH precipitation for tomato production under several saline conditions and sludge management. Agric. Water Manag. 167, 62–74 (2016). https://doi.org/10.1016/j.agwat.2015.12.025

    Article  Google Scholar 

  19. Almuktar, S., Scholz, M.: Recycling of domestic wastewater treated by vertical-flow wetlands for irrigation of two consecutive Capsicum annuum generations. Eco Eng. 107, 82–98 (2017). https://doi.org/10.1016/j.ecoleng.2017.07.002

    Article  Google Scholar 

  20. Endo, R., Yamashita, K., Shibuya, T., Kitaya, Y.: Use of methane fermentation digestate for hydroponic culture: Analysis of potential inhibitors in digestate to cucumber seedling. Eco-Eng. 28, 67–72 (2016). https://doi.org/10.11450/seitaikogaku.28.67

    Article  Google Scholar 

  21. Takemura, K., Endo, R., Shibuya, T., Kitaya, Y.: Modifications of concentrations of plant macronutrient ions in digestate from anaerobic digestion during nitrification processes. J. Resid. Sci. Technol. 13, 207–214 (2016). https://doi.org/10.12783/ISSN.1544-8053/13/3/4

    Article  Google Scholar 

  22. Ohyama, K., Yoshinaga, K., Kozai, T.: Energy and mass balance of a closed-type transplant production system (part 2) Water balance. Shokubutsu Kojo Gakkaishi. 12, 217–224 (2000). https://doi.org/10.2525/jshita.12.217

    Article  Google Scholar 

  23. Ohyama, K., Yamaguchi, J., Enjoji, A.: Evaluating labor productivity in a plant production system with sole-source lighting: A case study. HortTechnology. 28, 121–128 (2018). https://doi.org/10.21273/HORTTECH03886-17

    Article  Google Scholar 

  24. Li, Y.-Y., Sasaki, H., Okuno, Y., Seki, K., Kamigochi, Y.: Effect of the influent TS concentration on high solid thermophilic methane fermentation of organic fraction of municipal solid waste. Environ. Eng. Res. 35, 29–39 (1998). https://doi.org/10.11532/proes1992.35.29

    Article  Google Scholar 

  25. Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., Ozga-Zielinski, B.: A review: Dew water collection from radiative passive collectors to recent developments of active collectors. Sustain. Water Resour. Manag. 2, 71–86 (2016). https://doi.org/10.1007/s40899-015-0038-z

    Article  Google Scholar 

  26. Monteith, J.L., Unsworth, M.H.: Principles of Environmental Physics, second edn. Butterworth-Heinemann, Oxford (1990)

    Google Scholar 

  27. Beysens, D., Clus, O., Mileta, M., Milimouk, I., Muselli, M., Nikolayev, V.S.: Collecting dew as a water source on small islands: The dew equipment for water project in Bis˘evo (Croatia). Energy. 32, 1032–1037 (2007). https://doi.org/10.1016/j.energy.2006.09.021

    Article  Google Scholar 

  28. Clus, O., Ortega, P., Muselli, M., Milimouk, I., Beysens, D.: Study of dew water collection in humid tropical islands. J. Hydrol. 361, 159–171 (2008). https://doi.org/10.1016/j.jhydrol.2008.07.038

    Article  Google Scholar 

  29. Jacobs, A.F.G., Heusinkveld, B.G., Berkowicz, S.M.: Passive dew collection in a grassland area, the Netherlands. Atmos. Res. 87, 377–385 (2008). https://doi.org/10.1016/j.atmosres.2007.06.007

    Article  Google Scholar 

  30. Lekouch, I., Lekouch, K., Muselli, M., Mongruel, A., Kabbachi, B., Beysens, D.: Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J. Hydrol. 448–449, 60–72 (2012). https://doi.org/10.1016/j.jhydrol.2012.04.004

    Article  Google Scholar 

  31. Maestre-Valero, J.F., Ragab, R., Martínez-Alvarez, V., Baille, A.: Estimation of dew yield from radiative condensers by means of an energy balance model. J. Hydrol. 460–461, 103–109 (2011). https://doi.org/10.1016/j.jhydrol.2012.06.046

    Article  Google Scholar 

  32. Muselli, M., Beysens, D., Mileta, M., Milimouk, I.: Dew and rain water collection in the Dalmatian Coast. Croatia Atmos. Res. 92, 455–463 (2009). https://doi.org/10.1016/j.atmosres.2009.01.004

    Article  Google Scholar 

  33. Tuure, J., Korpela, A., Hautala, M., Hakojärvi, M., Mikkola, H., Räsänen, M., Duplissy, J., Pellikka, P., Petäjä, T., Kulmala, M., Alakukku, L.: Comparison of surface foil materials and dew collectors location in an arid area: A one-year field experiment in Kenya. Agric for. Meteorol. 276–277 (2019). https://doi.org/10.1016/j.agrformet.2019.06.012

  34. Peters, G.M., Blackburn, N.J., Armedion, M.: Environmental assessment of air to water machines—Triangulation to manage scope uncertainty. Int. J. Life Cycle Assess. 18, 1149–1157 (2013). https://doi.org/10.1007/s11367-013-0568-2

    Article  Google Scholar 

  35. Adeyemi, O., Grove, I., Peets, S., Domun, Y., Norton, T.: Dynamic modeling of lettuce transpiration for water status monitoring. Comput. Electron. Agric. 155, 50–57 (2018). https://doi.org/10.1016/j.compag.2018.10.008

    Article  Google Scholar 

  36. Pollet, S., Bleyaert, P., Lemeur, R.: Application of the Penman-Monteith model to calculate the evapotranspiration of head of lettuce. Acta Hortic. 519, 151–162 (2000). https://doi.org/10.17660/ActaHortic.2000.519.15

    Article  Google Scholar 

  37. Jolliet, O.: The water cycle. In: Stanhill, G., Enoch, H.Z. (eds.) Greenhouse Ecosystems, pp. 303–326. Elsevier Science B.V., Amsterdam (1998)

    Google Scholar 

  38. Bárcena, A., Graciano, C., Luca, T., Guiamet, J.J., Costa, L.: Shade cloths and polyethylene covers have opposite effects on tipburn development in greenhouse grown lettuce. Sci. Hortic. 249, 93–99 (2019). https://doi.org/10.1016/j.scienta.2019.01.023

    Article  Google Scholar 

  39. Wissemeier, A.H., Zühlke, G.: Relation between climatic variables, growth and the incidence of tipburn in field-grown lettuce as evaluated by simple, partial and multiple regression analysis. Sci. Hortic. 93, 193–204 (2002). https://doi.org/10.1016/S0304-4238(01)00339-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Yoshiaki Kitaya for his advice on the experimental design. The authors also thank Iku Nishihara for technical support. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Katsumi Ohyama: Conceptualization, Supervision, Methodology, Writing, review, and editing. Kaho Sumino: Investigation. Erdoo Paula Awai: Investigation. Kaori Niki: Investigation. Ryosuke Endo: Writing, review, and editing.

Corresponding author

Correspondence to Katsumi Ohyama.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohyama, K., Sumino, K., Awai, E.P. et al. Purification of Wastewater Generated from Methane Fermentation Using a Semi-Closed System with Hydroponically Grown Lettuce Plants. Waste Biomass Valor 15, 3147–3155 (2024). https://doi.org/10.1007/s12649-023-02358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02358-3

Keywords

Navigation