Skip to main content

Advertisement

Log in

Acetalization of β-citronellal Over a Renewable Carbon Catalyst Obtained from Bio-Oil Sulfonation: A Green Route to Obtain Valuable Feedstocks

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, an efficient renewable carbon catalyst obtained by bio-oil sulfonation was used for the first time to produce terpene acetals by condensation of β-citronellal with alkyl alcohols (methyl, ethyl, propyl, butyl, isopropyl) at room temperature. The catalyst was obtained by a simple bio-oil reaction with sulfuric acid at 393 K for different times (15, 30, 60, 90, 120, and 240 min). Potentiometric titrations and FT-IR analyses showed the formation of very strong acid sites, likely -SO3H, with surface concentrations reaching 0.35 and 0.50 mmol/ g. catalyst, for the catalyst obtained with reactions 120 and 240 min. These catalysts were used for β-citronellal condensation with alkyl alcohols to acetals with conversion and selectivity higher than 90%, at room temperature, using a 3.96 wt.% catalyst and 2 h reaction time. The effects of temperature, time, different alcohols, and catalyst load were evaluated. The catalyst can be recovered and reused four times without significant activity loss. The use of renewable origin solid catalysts, recyclable, and active in acetalization reactions at room temperature are positive aspects of this process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All of them agree with the availability of data and materials.

References

  1. Mewalal, R., Rai, D.K., Kainer, D., Chen, F., Külheim, C., Peter, G.F., Tuskan, G.A.: Plant-derived terpenes: a feedstock for specialty biofuels. Trends Biotechnol 35, 227–240 (2017). https://doi.org/10.1016/j.tibtech.2016.08.003

    Article  Google Scholar 

  2. Lange, J.P., Van Der Heide, E., Van Buijtenen, J., Price, R.: Furfural-A promising platform for lignocellulosic biofuels. Chemsuschem 5, 150–166 (2012). https://doi.org/10.1002/cssc.201100648

    Article  Google Scholar 

  3. Meylemans, H.A., Quintana, R.L., Goldsmith, B.R., Harvey, B.G.: Solvent-free conversion of linalool to methylcyclopentadiene dimers: A route to renewable high-density fuels. Chemsuschem 4, 465–469 (2011). https://doi.org/10.1002/cssc.201100017

    Article  Google Scholar 

  4. Tsolakis, N., Bam, W., Srai, J.S., Kumar, M.: Renewable chemical feedstock supply network design: The case of terpenes. J Clean Prod 222, 802–822 (2019). https://doi.org/10.1016/j.jclepro.2019.02.108

    Article  Google Scholar 

  5. Denicourt-Nowicki, A., Rauchdi, M., Ait Ali, M.R.A.: Terpenes: State-of-the-art and future trends. Catalysts (2019). https://doi.org/10.3390/catal9110893

  6. Monteiro, J.L.F., Veloso, C.O.: Catalytic conversion of terpenes into fine chemicals. Top Catal 27, 169–180 (2004). https://doi.org/10.1023/B:TOCA.0000013551.99872.8d

    Article  Google Scholar 

  7. da Silva, M.J., Lopes, N.P.G., Ferreira, S.O., da Silva, R.C., Natalino, R., Chaves, D.M., Teixeira, M.G.: Monoterpenes etherification reactions with alkyl alcohols over cesium partially exchanged Keggin heteropoly salts: effects of catalyst composition. Chem Pap 75, 153–168 (2021). https://doi.org/10.1007/s11696-020-01288-x

    Article  Google Scholar 

  8. Batalha, D.C., Ferreira, S.O., da Silva, R.C., da Silva, M.J.: Cesium-exchanged lacunar Keggin heteropolyacid salts: efficient solid catalysts for the green oxidation of terpenic alcohols with hydrogen peroxide. ChemSelect 5, 1976–1986 (2020). https://doi.org/10.1002/slct.201903437

    Article  Google Scholar 

  9. da Silva, M.J., de Andrade Leles, L.C., Teixeira, M.G.: Lewis acid metal cations exchanged heteropoly salts as catalysts in β-pinene etherification. React Kinet Mech Catal 131, 875–887 (2020). https://doi.org/10.1007/s11144-020-01888-4

    Article  Google Scholar 

  10. Vilanculo, C.B., da Silva, M.J.: Can Brønsted acids catalyze the epoxidation of allylic alcohols with H2O2? With a little help from the proton, the H3PMo12O40 acid did it and well. Mol Catal 512, 111780–111788 (2021). https://doi.org/10.1016/j.mcat.2021.111780

    Article  Google Scholar 

  11. Ribeiro, C.J.A., Pereira, M.M., Kozhevnikova, E.F., Kozhevnikov, I.V., Gusevskaya, E.V., da Silva Rocha, K.A.: Heteropoly acid catalysts in upgrading of biorenewables: Synthesis of para-menthenic fragrance compounds from α-pinene oxide. Catal Today 344:166–170 (2020).

  12. da Silva, M.J., Lopes, N.P.G., Bruziquesi, C.G.O:. Furfural acetalization over Keggin heteropolyacid salts at room temperature: effect of cesium doping. React Kinet Mech Catal 133:913–931 (2021). https://doi.org/10.1007/s11144-021-02025-5

  13. Dong, J.L., Yu, L.S.H., Xie, J.W.: A simple and versatile method for the formation of acetals/ketals using trace conventional acids. ACS Omega 3, 4974–4985 (2018). https://doi.org/10.1021/acsomega.8b00159

    Article  Google Scholar 

  14. Anaç, O., Talinli, N.: Studies in acetalization reactions of some terpenes. Bull des Sociétés Chim Belges 102, 79–87 (1993). https://doi.org/10.1002/bscb.19931020203

    Article  Google Scholar 

  15. Teixeira, M.G., Natalino, R., da Silva, M.J.: A kinetic study of heteropolyacid-catalyzed furfural acetalization with methanol at room temperature via ultraviolet spectroscopy. Catal Today 344, 143–149 (2020). https://doi.org/10.1016/j.cattod.2018.11.071

    Article  Google Scholar 

  16. Wuts, P.G.M.: Greene’s protective groups in organic synthesis., Kalamazoo, Michigan U, 5° Ed., Wiley (2014).

  17. Corma, A., García, H.: Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103, 4307–4365 (2003). https://doi.org/10.1021/cr030680z

    Article  Google Scholar 

  18. Kumar, D., Kumar, R., Chakraborti, A.K.: Tetrafluoroboric acid adsorbed on silica gel as a reusable heterogeneous dual-purpose catalyst for conversion of aldehydes/ketones into acetals/ketals and back again. Synthesis (Stuttg) (2008). https://doi.org/10.1055/s-2008-1042940

    Article  Google Scholar 

  19. Climent, M.J., Corma, A., Iborra, S., Navarro, M.C., Primo, J.: Use of mesoporous MCM-41 aluminosilicates as catalysts in the production of fine chemicals: preparation of dimethylacetals. J Catal 161, 783–789 (1996). https://doi.org/10.1006/jcat.1996.0241

    Article  Google Scholar 

  20. Castanheiro, J.: Acetalization of glycerol with citral over heteropolyacids immobilized on KIT-6. Catalysts 12, 81–93 (2022). https://doi.org/10.3390/catal12010081

    Article  Google Scholar 

  21. Hartati., Firda, P.B.D., Bahruji, H., Bakar, M.B.: Review on heterogeneous catalysts for the synthesis of perfumery chemicals via isomerization, acetalization and hydrogenation. Flavour Fragr J 36, 509–525 (2021)

    Article  Google Scholar 

  22. Contreras, N., da Silva, M.J.: Lacunar Keggin heteropolyacid salts : soluble, solid and solid-supported catalysts. J Clust Sci 29, 195–205 (2018). https://doi.org/10.1007/s10876-018-1343-0

    Article  Google Scholar 

  23. Zeng, D., Zhang, Q., Chen, S., Liu, S., Wang, G.: Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mat. 219, 54–58 (2016). https://doi.org/10.1016/j.micromeso.2015.07.028

    Article  Google Scholar 

  24. Fonseca, J.M., Spessato, L., Cazetta, A.L., da Silva, C., Almeida, V.C., Sulfonated carbon: synthesis, properties, and production of biodiesel,170, 2022, 108668, Chem. Engin. Proces. - Process Intensification, https://doi.org/10.1016/j.cep.2021.108668

  25. Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., Zhang, Q., Lin, X., Wang, C. One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification. Bioresour Technol, 319, 124194. (2021) https://doi.org/10.1016/j.biortech.2020.124194)

  26. Balakrishnan, M., Sacia, E.R., Bell, A.T.: Syntheses of biodiesel precursors: Sulfonic acid catalysts for condensation of biomass-derived platform molecules. Chemsuschem 7, 1078–1085 (2014). https://doi.org/10.1002/cssc.201300931

    Article  Google Scholar 

  27. Zhang, T., Cao, D., Feng, X., Zhu, J., Lu, X., Mu, L., Qian, H.: Machine learning prediction of bio-oil characteristics quantitatively relating to biomass compositions and pyrolysis conditions. Fuel (2022). https://doi.org/10.1016/j.fuel.2021.122812

    Article  Google Scholar 

  28. Ballotin, F.C., Almeida, V.F., Ardisson, J.D., da Silva, M.J., Soares, R.R., Teixeira, A.P.C., Lago, R.M.: New magnetic Fe oxide-carbon based acid catalyst prepared from bio-oil for esterification reactions. J Braz Chem Soc 31:1714–1724 (2020). https://doi.org/10.21577/0103-5053.20200057

  29. Ballotin, F.C., da Silva, M.J., Teixeira, A.P.C., Lago, R.M.: Amphiphilic acid carbon catalysts produced by bio-oil sulfonation for solvent-free glycerol ketalization. Fuel 274, 117799–117805 (2020). https://doi.org/10.1016/j.fuel.2020.117799

    Article  Google Scholar 

  30. Lakhya, J.K., Päivi, M.-A., Thakur, A.J., Kumar, N., Mikkola, J.P.: Sulfonated carbon as a new, reusable heterogeneous catalyst for one-pot synthesis of acetone soluble cellulose acetate. RSC Adv. 6, 8829–8837 (2016). https://doi.org/10.1039/C5RA25716F

    Article  Google Scholar 

  31. Ballotin, F.C., Perdigão, L.T., Rezende, M.V.B., Pandey, S.D., da Silva, M.J., Soares, R.R., Freitas, J.C.C., Teixeira, A.P.C., Lago, R.M.: Bio-oil: a versatile precursor to produce carbon nanostructures in liquid phase under mild conditions. New J Chem 43, 2430–2433 (2019). https://doi.org/10.1039/C8NJ05251D

    Article  Google Scholar 

  32. Pizzio, L.R., Vázquez, P.G., Cáceres, C.V., Blanco, M.N.: Supported Keggin type heteropolycompounds for ecofriendly reactions. Appl Catal A 256, 125–139 (2003). https://doi.org/10.1016/S0926-860X(03)00394-6

    Article  Google Scholar 

  33. Ballotin, F.C., da Silva, M.J., Lago, R.M., Teixeira, A.P.: Solid acid catalysts based on sulfonated carbon nanostructures embedded in an amorphous matrix produced from bio-oil: Esterification of oleic acid with methanol. J Environ Chem Eng (2020). https://doi.org/10.1016/j.jece.2020.103674

    Article  Google Scholar 

  34. Bernd, M.G.S., Bragança, S.R., Heck, N., Filho, L.C.P.D.S.: Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor. J Mater Res Technol 6:171–177 (2017). https://doi.org/10.1016/j.jmrt.2016.11.003

  35. Del Río, J.C., Gutiérrez, A., Romero, J., Martínez, M.J., Martínez, A.T.: Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS. J Anal Appl Pyrolysis 58–59, 425–439 (2001). https://doi.org/10.1016/S0165-2370(00)00126-1

    Article  Google Scholar 

  36. Branca, C., Giudicianni, P., Di Blasi, C.: GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Ind Eng Chem Res (2003). https://doi.org/10.1021/ie030066d

    Article  Google Scholar 

  37. Gong, R., Ma, Z., Wang, X., Han, Y., Guo, Y., Sun, G., Lia, Y., Zhou, J.: Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Adv. 9, 28902–28907 (2019)

    Article  Google Scholar 

  38. Sulfonic-Functionalized Carbon Catalyst for Esterification of High Free Fatty Acid, Win Win Mara, W.W., Somsooka, E., Procedia Engineering 32:212 – 218 (2012), doi:https://doi.org/10.1016/j.proeng.2012.01.1259

  39. Vilanculo, C.B., de Andrade Leles, L.C., da Silva, M.J.: H4SiW12O40-Catalyzed levulinic acid esterification at room temperature for production of fuel bioadditives. Waste Biomass Valoriz 11, 1895–1904 (2020). https://doi.org/10.1007/s12649-018-00549-x

    Article  Google Scholar 

  40. Ravi, K., Biradar, A.V., A.V.,: Highly active and scalable SO3H functionalized carbon catalyst synthesized from bagasse for the transformation of bio-based platform chemicals into fuel precursors and its in-depth characterization studies. Fuel 321, 124008–124023 (2022). https://doi.org/10.1016/j.fuel.2022.124008

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brasil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Funding

All of them agree with the funding described in the submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection and analysis were performed by Neide Paloma Gonçalves Lopes and Fabiane Carvalho Ballotin. The first draft of the manuscript was written by Márcio José da Silva, Rochel Montero Lago, and Ana Paula de Carvalho Teixeira. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Márcio José da Silva.

Ethics declarations

Conflict of interest

All of them have no competing interests.

Ethical Approval

All of them approved of the ethics and consented to participate in the publication.

Consent to Publication

All of them consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file4 (DOCX 100 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, N.P.G., Ballotin, F.C., de Carvalho Teixeira, A.P. et al. Acetalization of β-citronellal Over a Renewable Carbon Catalyst Obtained from Bio-Oil Sulfonation: A Green Route to Obtain Valuable Feedstocks. Waste Biomass Valor 15, 1369–1377 (2024). https://doi.org/10.1007/s12649-023-02216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02216-2

Keywords

Navigation