Skip to main content
Log in

Improving Small-Scale Value Chains in Tropical Forests. The Colombian Case of Annatto and Açai

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Tropical forests provide a development opportunity for communities that subsist on small crop value chains. Annatto and açai are exotic fruits used as a source of natural dyes and high-calorie beverages, respectively. However, the processing of these fruits generates considerable residues that have a negative environmental impact and can be used for biofuel production. This work elucidates valorization schemes of annatto and açai in integrated raw material systems to improve the value chains of tropical forest fruits. The economic and environmental pre-feasibility for producing annatto dye, açai powder, and biogas was evaluated through experimental and simulation data. As the main results, it was obtained that the extraction of dye by abrasion shows to be a methodology with high carotenoid content. Additionally, freeze-drying improves the antioxidant activity and the content of polyphenols and anthocyanins on açai pulps. The processing residues of both fruits were used as the substrate for anaerobic digestion purposes and as a low-cost valorization alternative, showing the best biogas yields for the exhausted annatto seed. The experimental results were fed to the simulation of small-scale processing schemes based on exotic fruits. The main results demonstrated that working in batch six-monthly schemes allows for obtaining economic feasibility based on fruit production lower than the national scale. Although freeze-drying is an expensive process, the production of açai fruit powder is the most cost-effective scenario. From an environmental perspective, the disposal of digestate as waste drastically affects the environmental analysis. However, for the five environmental indices analyzed, producing açai powder, biogas, and digestate valorization as fertilizer is the scenario with the lowest environmental impact. Finally, the results were analyzed regarding the impact on the Sustainable Development Goals (SDGs) of the region. This work demonstrated that small-scale schemes based on the processing of tropical forest fruits improve the regional agribusiness performance by strengthening the value chain considering economic, environmental, and social issues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data supporting the results of this study are available upon request from the corresponding author.

References

  1. Medina Rivas, M.A., et al.: Chocó, Colombia: a hotspot of human biodiversity. Rev. Biodivers. Neotrop. 6(1), 45–54 (2016). https://doi.org/10.18636/bioneotropical.v6i1.341

    Article  Google Scholar 

  2. Agronet - MinAgricultura, “Estadísticas Agropecuarias. Reporte: Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo,” MinAgricultura, 2019. www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 (accessed Aug. 29, 2021).

  3. Taham, T., Cabral, F.A., Barrozo, M.A.S.: Extraction of bixin from annatto seeds using combined technologies. J. Supercrit. Fluids 100, 175–183 (2015). https://doi.org/10.1016/j.supflu.2015.02.006

    Article  Google Scholar 

  4. Albuquerque, C., Meireles, M.A.: Trends in annatto agroindustry bixin processing technologies and market. Recent Pat. Eng. 5(2), 94–102 (2012). https://doi.org/10.2174/187221211796320738

    Article  Google Scholar 

  5. Matta, Fv., Xiong, J., Lila, M.A., Ward, N.I., Felipe-Sotelo, M., Esposito, D.: Chemical composition and bioactive properties of commercial and non-commercial purple and white açaí berries. Foods (2020). https://doi.org/10.3390/foods9101481

  6. de Oliveira, M., Schwartz, G.: “Açaí—Euterpe oleracea”, in Exotic Fruits. Elsevier, Amsterdam (2018). https://doi.org/10.1016/b978-0-12-803138-4.00002-2

    Book  Google Scholar 

  7. United States Agency International Development (USAID), “Plan de negocios açaí (Euterpe oleracea),” Bogotá DC, 2015.

  8. de Jesus, A.L.T., Leite, T.S., Cristianini, M.: High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): effect on pulp color and inactivation of peroxidase and polyphenol oxidase. Food Res. Int. 105, 853–862 (2018). https://doi.org/10.1016/J.FOODRES.2017.12.013

    Article  Google Scholar 

  9. Lucas, B.F., Zambiazi, R.C., Costa, J.A.V.: Biocompounds and physical properties of açaí pulp dried by different methods. LWT 98, 335–340 (2018). https://doi.org/10.1016/J.LWT.2018.08.058

    Article  Google Scholar 

  10. Dal-Bó, V., Freire, J.T.: Effects of lyophilization on colorimetric indices, phenolics content, and antioxidant activity of avocado (Persea americana) pulp. Food Control 132, 108526 (2022). https://doi.org/10.1016/J.FOODCONT.2021.108526

    Article  Google Scholar 

  11. Buratto, R.T., Cocero, M.J., Martín, Á.: Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chem. Eng. Process.—Process Intensif. (2021). https://doi.org/10.1016/j.cep.2020.108269

    Article  Google Scholar 

  12. Quintero Quiroz, J., et al.: Ultrasound-assisted extraction of bioactive compounds from annatto seeds, evaluation of their antimicrobial and antioxidant activity, and identification of main compounds by LC/ESI-MS analysis. Int. J. Food Sci. (2019). https://doi.org/10.1155/2019/3721828

    Article  Google Scholar 

  13. Sato, M.K., de Lima, H.V., Costa, A.N., Rodrigues, S., Pedroso, A.J.S., de Freitas Maia, C.M.B.: Biochar from acai agroindustry waste study of pyrolysis conditions. Waste Manag. (2019). https://doi.org/10.1016/j.wasman.2019.07.022

    Article  Google Scholar 

  14. Itai, Y., Santos, R., Branquinho, M., Malico, I., Ghesti, G.F., Brasil, A.M.: Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renew. Energy 66, 662–669 (2014). https://doi.org/10.1016/j.renene.2014.01.007

    Article  Google Scholar 

  15. Teixeira, M.A., Escobar Palacio, J.C., Sotomonte, C.R., Silva Lora, E.E., Venturini, O.J., Aßmann, D.: Assaí—an energy view on an Amazon residue. Biomass Bioenergy (2013). https://doi.org/10.1016/j.biombioe.2013.08.007

    Article  Google Scholar 

  16. Zamri, M.F.M.A., et al.: A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 137, 110637 (2021). https://doi.org/10.1016/J.RSER.2020.110637

    Article  Google Scholar 

  17. Poveda-Giraldo, J.A., Cardona, C.A.: Biorefinery potential of eucalyptus grandis to produce phenolic compounds and biogas. Can. J. For. Res. 6, 1–49 (2020). https://doi.org/10.1139/cjfr-2020-0201

    Article  Google Scholar 

  18. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999). https://doi.org/10.1016/s0076-6879(99)99017-1

    Article  Google Scholar 

  19. Marinova, G., Batchvarov, V.: Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian J. Agr. Sci. 17(1), 11–24 (2011)

    Google Scholar 

  20. Lee, J., Durst, R.W., Wrolstad, R.E.: Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. OAC Int. 88(5), 1269–1278 (2001). https://doi.org/10.1093/jaoac/88.5.1269

    Article  Google Scholar 

  21. VDI-Handbuch Technik Biomasse/Boden, “VDI 4630 - Fermentation of organic materials – Characterization of the substrate, sampling, collection of material data and fermentation test,” 2016, Accessed: Sep. 05, 2017. [Online]. Available: http://www.vdi.eu/uploads/tx_vdirili/pdf/2385990.pdf

  22. Angelidaki, I., et al.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59(5), 927–934 (2009). https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  23. Noppe, H., Abuín Martinez, S., Verheyden, K., van Loco, J., Companyó Beltran, R., de Brabander, H.F.: Determination of bixin and norbixin in meat using liquid chromatography and photodiode array detection. Food Addit. Contam. 26(1), 17–24 (2009). https://doi.org/10.1080/02652030802322564

    Article  Google Scholar 

  24. Wooley, R.J., Putsche, V.: Development of an ASPEN PLUS physical property database for biofuels components—NREL/MP-425–20685. Golden, Colorado (1996)

    Book  Google Scholar 

  25. Alonso-Gómez, L.A., Solarte-Toro, J.C., Bello-Pérez, L.A., Cardona-Alzate, C.A.: Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod. Process. 121, 29–42 (2020). https://doi.org/10.1016/J.FBP.2020.01.005

    Article  Google Scholar 

  26. Sagastume Gutiérrez, A., Mendoza Fandiño, J.M., Cabello Eras, J.J., Sofan German, S.J.: Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas The case of the department of Cordoba Colombia. Dev. Eng. (2022). https://doi.org/10.1016/J.DEVENG.2022.100093

    Article  Google Scholar 

  27. Peters, M., Timmerhaus, K., West, R.: Plant design and economics for chemical engineers, 5th edn. McGraw-Hill, New York (2003)

    Google Scholar 

  28. Poveda-Giraldo, J.A., Cardona Alzate, C.A.: A biorefinery for the valorization of marigold Calendula officinalis residues to produce biogas and phenolic compounds. Food Bioprod. Process. (2021). https://doi.org/10.1016/j.fbp.2020.10.015

    Article  Google Scholar 

  29. Alves, R.W., Ulson De Souza, A.A., Ulson De Souza, S.M.D.A.G., Jauregi, P.: Recovery of norbixin from a raw extraction solution of annatto pigments using colloidal gas aphrons (CGAs). Sep. Purif. Technol. 48(2), 208–213 (2006). https://doi.org/10.1016/J.SEPPUR.2005.07.014

    Article  Google Scholar 

  30. Barrozo, M.A.S., Santos, K.G., Cunha, F.G.: Mechanical extraction of natural dye extract from Bixa orellana seeds in spouted bed. Ind. Crops Prod. 45, 279–282 (2013). https://doi.org/10.1016/j.indcrop.2012.12.052

    Article  Google Scholar 

  31. Shuhama, I.K., Aguiar, M.L., Oliveira, W.P., Freitas, L.A.P.: Experimental production of annatto powders in spouted bed dryer. J. Food Eng. 59(1), 93–97 (2003). https://doi.org/10.1016/S0260-8774(02)00433-8

    Article  Google Scholar 

  32. Raddatz-Mota, D., et al.: Chemical characterization and quantification of the pigment extraction yield of seven Mexican accessions of Bixa orellana. Rev. Mexicana de Ingeniera Quimica 15(3), 727–740 (2016). https://doi.org/10.24275/rmiq/bio1021

    Article  Google Scholar 

  33. Giridhar, P., Parimalan, R.: A biotechnological perspective towards improvement of annatto color production for value addition—the influence of biotic elicitors. Asia Pac. J. Mol. Biol. Biotechnol. 18(1), 77–79 (2010)

    Google Scholar 

  34. Li, D., Li, B., Ma, Y., Sun, X., Lin, Y., Meng, X.: Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. J. Food Compos. Anal. 62, 84–93 (2017). https://doi.org/10.1016/J.JFCA.2017.03.006

    Article  Google Scholar 

  35. Oliveira, N.L., Silva, S.H., J. de A. Figueiredo, L. B. Norcino, and J. V. de Resende,: Infrared-assisted freeze-drying (IRFD) of açai puree: effects on the drying kinetics, microstructure and bioactive compounds. Innovative Food Sci. Emerg. Technol. (2021). https://doi.org/10.1016/J.IFSET.2021.102843

    Article  Google Scholar 

  36. Yamaguchi, K.K.D.L., Pereira, L.F.R., Lamarão, C.V., Lima, E.S., da Veiga-Junior, V.F.: Amazon acai chemistry and biological activities: a review. Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2015.01.055

    Article  Google Scholar 

  37. Oliveira, A.R., Ribeiro, A.E.C., Oliveira, É.R., Garcia, M.C., Soares Júnior, M.S., Caliari, M.: Structural and physicochemical properties of freeze-dried açaí pulp (Euterpe oleracea mart.). Food Sci.Technol. 40(2), 282–289 (2020). https://doi.org/10.1590/fst.34818

    Article  Google Scholar 

  38. Xu, J., Bu, F., Zhu, W., Luo, G., Xie, L.: Microbial consortiums of hydrogenotrophic methanogenic mixed cultures in lab-scale ex-situ biogas upgrading systems under different conditions of temperature, ph and CO. Microorganisms (2020). https://doi.org/10.3390/microorganisms8050772

    Article  Google Scholar 

  39. Zhang, Y., Ma, A., Zhuang, G., Zhuang, X.: The acetotrophic pathway dominates methane production in Zoige alpine wetland coexisting with hydrogenotrophic pathway. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-45590-5

    Article  Google Scholar 

  40. Shahbaz, M., et al.: Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-03232-w

    Article  Google Scholar 

  41. Parikh, J., Channiwala, S.A., Ghosal, G.K.: A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86(12–13), 1710–1719 (2007). https://doi.org/10.1016/j.fuel.2006.12.029

    Article  Google Scholar 

  42. Wang, X., Lu, X., Li, F., Yang, G.: Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw Focusing on ammonia inhibition. PLoS ONE (2014). https://doi.org/10.1371/JOURNAL.PONE.0097265

    Article  Google Scholar 

  43. Sganzerla, W.G., Ampese, L.C., Parisoto, T.A.C., Forster-Carneiro, T.: Process intensification for the recovery of methane-rich biogas from dry anaerobic digestion of açaí seeds. Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01698-1

    Article  Google Scholar 

  44. Maciel-Silva, F.W., Mussatto, S.I., Forster-Carneiro, T.: Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. J. Clean. Prod. 228, 1131–1142 (2019). https://doi.org/10.1016/j.jclepro.2019.04.362

    Article  Google Scholar 

  45. M. R. al Mamun and S. Torii,: Removal of hydrogen sulfide (H2S) from biogas using zero-valent iron. J. Clean Energy Technolo. 3(6), 428–432 (2015). https://doi.org/10.7763/jocet.2015.v3.236

    Article  Google Scholar 

  46. Choudhury, A., Shelford, T., Felton, G., Gooch, C., Lansing, S.: Evaluation of hydrogen sulfide scrubbing systems for anaerobic digesters on two US dairy farms. Energies (2019). https://doi.org/10.3390/en12244605

    Article  Google Scholar 

  47. Christofoletti, C.A., Escher, J.P., Correia, J.E., Marinho, J.F.U., Fontanetti, C.S.: Sugarcane vinasse: environmental implications of its use. Waste Manage. 33(12), 2752–2761 (2013). https://doi.org/10.1016/J.WASMAN.2013.09.005

    Article  Google Scholar 

  48. Cristóbal, J., Matos, C.T., Aurambout, J.P., Manfredi, S., Kavalov, B.: Environmental sustainability assessment of bioeconomy value chains. Biomass Bioenergy 89, 159–171 (2016). https://doi.org/10.1016/j.biombioe.2016.02.002

    Article  Google Scholar 

  49. Kyriakopoulou, K., Papadaki, S., Krokida, M.: Life cycle analysis of β-carotene extraction techniques. J. Food Eng. 167, 51–58 (2015). https://doi.org/10.1016/j.jfoodeng.2015.03.008

    Article  Google Scholar 

  50. UNDP, “Sustainable Development Goals,” 2020. https://www.undp.org/content/undp/en/home/sustainable-development-goals.html (accessed Nov. 19, 2020).

  51. Blair, J., Gagnon, B., Klain, A.: Biomass supply and the sustainable development goals. International Case Studies, Paris (2021)

    Google Scholar 

  52. Departamento Nacional de Planeación. Colombia, “Plan Nacional de Desarrollo 2018 - 2022,” 2022. https://www.dnp.gov.co/DNPN/Paginas/Plan-Nacional-de-Desarrollo.aspx#:~:text=El%20Plan%20Nacional%20de%20Desarrollo%20es%20un%20pacto%20por%20la,construir%20el%20futuro%20de%20Colombia.

  53. Gobernación del Chocó, “Plan Departamental de Desarrollo Chocó.” [Online]. Available: https://www.obsgestioneducativa.com/download/plan-de-desarrollo-departamental-choco-2020-2023/

  54. Freitas, M.A.B., Magalhães, J.L.L., Carmona, C.P., Arroyo-Rodríguez, V., Vieira, I.C.G., Tabarelli, M.: Intensification of açaí palm management largely impoverishes tree assemblages in the Amazon estuarine forest. Biol. Conserv. 261, 109251 (2021). https://doi.org/10.1016/j.biocon.2021.109251

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the program “Reconstrucción del tejido social en zonas posconflicto en Colombia” SIGP code: 57579 with the project entitled “Competencias empresariales y de innovación para el desarrollo económico y la inclusión productiva de las regiones afectadas por el conflicto colombiano” SIGP code 58907. Contract number: FP44842-213-2018”.

Funding

This work was supported by the “Ministerio de Ciencia, Tecnología e Innovación (MINCIENCIAS)”, Colombia. (Contract number: FP44842-213–2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization, validation, and design of the study. Methodology, investigation, software, and formal analysis were performed by JAlP-G, NS-A, SP-R, and MO-S. The funding acquisition and project administration was carried out by CEOA and CEOA. The first draft of the manuscript was written by JAlP-G and all authors commented on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Carlos Ariel Cardona Alzate.

Ethics declarations

Conflicts of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 111 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poveda-Giraldo, J.A., Salgado-Aristizabal, N., Piedrahita-Rodriguez, S. et al. Improving Small-Scale Value Chains in Tropical Forests. The Colombian Case of Annatto and Açai. Waste Biomass Valor 14, 3297–3313 (2023). https://doi.org/10.1007/s12649-022-02002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-02002-6

Keyword

Navigation