Skip to main content
Log in

Structure and Properties of Lignin Extracted from Cotton Stalk by Non-polluting Ethanol-Assisted Hot Water Pretreatment and its High-Value Utilization for Methylene Blue Removal

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignin has a unique chemical structure that can effectively adsorb dye cations in sewage. In this paper, a non-polluting ethanol-assisted hot water pretreatment method was used to extract lignin from the cotton stalk. The structure and properties of lignin were investigated, and the adsorption isotherm model, internal diffusion model, and adsorption kinetic equation for the adsorption of methylene blue were verified. The extraction yield of lignin was 15.65%. The molecular mass of lignin was only about 900 Da. Both Infrared Spectroscopy and 2D-Nuclear Magnetic Resonance showed that it contained the type of grass lignin units (guaiacyl, syringyl, and p-hydroxyphenyl) phenolic hydroxyl units. The morphology of the lignin was that there were many burr particles on the blocky surface. The lignin had a good effect in removing methylene blue, with 17.11 mg/g, and its pH range was wide from 3 to 8. The Dubinin–Radushkevich model is the best isothermal model that matches the experimental data, R2 = 0.988, the pseudo-second-order kinetic equation is the best-matching model, R2 = 0.9369. In the intraparticle diffusion model test, intra-particle diffusion occurs in the second stage of the matching line.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the [manuscript],[taary materials] repository.

References

  1. Luong, N.D., Binh, N.T.T., Duong, L.D., Kim, D.O., Kim, D.S., Lee, S.H., Kim, B.J., Lee, Y.S., Nam, J.: Do: an eco-friendly and efficient route of lignin extraction from black liquor and a lignin-based copolyester synthesis. Polym. Bull. 68, 879–890 (2012). https://doi.org/10.1007/s00289-011-0658-x

    Article  Google Scholar 

  2. Sarkanen, K.V., Islam, A., Anderson, C.D.: Methods in Lignin Chemistry. In: Lin, S.Y. and Dence, C.W. (eds.) Springer Series in Wood Science. pp. 387–406. Springer Berlin Heidelberg (1992)

  3. Cheng, H.N., Dowd, M.K., Shogren, R.L., Biswas, A.: Conversion of cotton byproducts to mixed cellulose esters. Carbohydr. Polym. 86, 1130–1136 (2011). https://doi.org/10.1016/j.carbpol.2011.06.002

    Article  Google Scholar 

  4. Apaydin-Varol, E., Uzun, B.B., Önal, E., Pütün, A.E.: Synthetic fuel production from cottonseed: fast pyrolysis and a TGA/FT-IR/MS study. J. Anal. Appl. Pyrolysis 105, 83–90 (2014). https://doi.org/10.1016/j.jaap.2013.10.006

    Article  Google Scholar 

  5. Chen, J., Liang, J., Wu, S.: Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis. Bioresour. Technol. 218, 402–409 (2016). https://doi.org/10.1016/j.biortech.2016.06.122

    Article  Google Scholar 

  6. Luo, Y., Li, Z., Li, X., Liu, X., Fan, J., Clark, J.H., Hu, C.: The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal. Today 319, 14–24 (2019). https://doi.org/10.1016/j.cattod.2018.06.042

    Article  Google Scholar 

  7. Yi, G., Zhang, Y.: One-Pot Selective Conversion of Hemicellulose (Xylan) to Xylitol under Mild Conditions. ChemSusChem. 5, 1383–1387 (2012). https://doi.org/10.1002/cssc.201200290

  8. Wang, L., Li, T., Liu, F., Liu, D., Xu, Y., Yang, Y., Zhao, Y., Wei, H.: Ultrasonic-assisted enzymatic extraction and characterization of polysaccharides from dandelion (Taraxacum officinale) leaves. Int. J. Biol. Macromol. 126, 846–856 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.232

    Article  Google Scholar 

  9. Otieno, D.O., Ahring, B.K.: The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr. Res. 360, 84–92 (2012). https://doi.org/10.1016/j.carres.2012.07.017

    Article  Google Scholar 

  10. Hansen, N.M.L., Plackett, D.: Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9, 1493–1505 (2008). https://doi.org/10.1021/bm800053z

    Article  Google Scholar 

  11. Civelek Yoruklu, H., Koroglu, E.O., Ozdemir, O.K., Demir, A., Ozkaya, B.: Bioenergy production from cotton straws using different pretreatment methods. Int. J. Hydrog. Energy. 45, 34720–34729 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.104

    Article  Google Scholar 

  12. Dai, L., Cheng, T., Duan, C., Zhao, W., Zhang, W., Zou, X., Aspler, J., Ni, Y.: 3D printing using plant-derived cellulose and its derivatives: a review. Carbohydr. Polym. 203, 71–86 (2019). https://doi.org/10.1016/j.carbpol.2018.09.027

    Article  Google Scholar 

  13. Zhifeng, Z.: Research Progress in Cellulose Degradation by Cellulase. Chem. Ind. Eng. Prog. 29, 1493–1501 (2016).https://doi.org/10.14159/j.cnki.0441-3776.2016.02.004https://urldefense.com/v3/

  14. Dorrestijn, E., Laarhoven, L.J.J., Arends, I.W.C.E., Mulder, P.: Occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153–192 (2000). https://doi.org/10.1016/S0165-2370(99)00082-0

    Article  Google Scholar 

  15. Cemin, A., Ferrarini, F., Poletto, M., Bonetto, L.R., Bortoluz, J., Lemée, L., Guégan, R., Esteves, V.I., Giovanela, M.: Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. Int. J. Biol. Macromol. 170, 375–389 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.155

    Article  Google Scholar 

  16. Gómez-Ceballos, V., García-Córdoba, A., Zapata-Benabithe, Z., Velásquez, J., Quintana, G.: Preparation of hyperbranched polymers from oxidized lignin modified with triazine for removal of heavy metals. Polym. Degrad. Stab. (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109271

    Article  Google Scholar 

  17. Wang, B., Sun, Y.-C., Sun, R.-C.: Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. J. Leather Sci. Eng. 1, 1–25 (2019). https://doi.org/10.1186/s42825-019-0003-y

    Article  Google Scholar 

  18. Ben Mosbah, M., Mechi, L., Khiari, R., Moussaoui, Y.: Current state of porous carbon for wastewater treatment. Processes (2020). https://doi.org/10.3390/pr8121651

    Article  Google Scholar 

  19. Taleb, F., Ammar, M., Mosbah, M., ben Salem, R., Moussaoui, Y.: Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep. 10, 1–13 (2020). https://doi.org/10.1038/s41598-020-68047-6

    Article  Google Scholar 

  20. Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J.T.N., Tsang, D.C.W., Hunt, A.J.: Lignin materials for adsorption: current trend, perspectives, and opportunities. Bioresour. Technol. 272, 570–581 (2019). https://doi.org/10.1016/j.biortech.2018.09.139

    Article  Google Scholar 

  21. Jin, Y., Zeng, C., Lü, Q.F., Yu, Y.: Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. Int. J. Biol. Macromol. 123, 50–58 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.213

    Article  Google Scholar 

  22. Yu, C., Wang, F., Zhang, C., Fu, S., Lucia, L.A.: The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent. React. Funct. Polym. 106, 137–142 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.07.016

    Article  Google Scholar 

  23. Zhang, S., Wang, Z., Zhang, Y., Pan, H., Tao, L.: Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environ. Sci. 31, 3–11 (2016). https://doi.org/10.1016/j.proenv.2016.02.001

    Article  Google Scholar 

  24. Shattar, S.F.A., Foo, K.Y.: Sodium salt-assisted low temperature activation of bentonite for the adsorptive removal of methylene blue. Sci. Rep. 12, 1–12 (2022). https://doi.org/10.1038/s41598-022-06254-z

    Article  Google Scholar 

  25. Shittu, I., Achazhiyath Edathil, A., Alsaeedi, A., Al-Asheh, S., Polychronopoulou, K., Banat, F.: Development of novel surfactant functionalized porous graphitic carbon as an efficient adsorbent for the removal of methylene blue dye from aqueous solutions. J. Water Process Eng. 28, 69–81 (2019). https://doi.org/10.1016/j.jwpe.2019.01.001

    Article  Google Scholar 

  26. Zhou, Y., Lu, J., Zhou, Y., Liu, Y.: Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  Google Scholar 

  27. Dabagh, A., Bagui, A., Abali, M., Aziam, R., Chiban, M., Sinan, F., Zerbet, M.: Increasing the adsorption efficiency of methylene blue by acid treatment of the plant Carpobrotus edulis. Chem. Afr. 4, 585–598 (2021). https://doi.org/10.1007/s42250-021-00233-z

    Article  Google Scholar 

  28. Ben Mosbah, M., Alsukaibi, A.K., Mechi, L., Alimi, F., Moussaoui, Y.: Ecological synthesis of CuO nanoparticles using Punica granatum L. peel extract for the retention of methyl green. Water (2022). https://doi.org/10.3390/w14091509

    Article  Google Scholar 

  29. Elhleli, H., Mannai, F., Ben Mosbah, M., Khiari, R., Moussaoui, Y.: Biocarbon derived from Opuntia ficus indica for p-nitrophenol retention. Processes (2020). https://doi.org/10.3390/pr8101242

    Article  Google Scholar 

  30. Ouni, A., Rabaaoui, N., Mechi, L., Enaceur, N., AlSukaibi, A.K.D., Azzam, E.M., Alenezi, K.M., Moussaoui, Y.: Removal of pesticide chlorobenzene by anodic degradation: variable effects and mechanism. J. Saudi Chem. Soc. 25, 101326 (2021). https://doi.org/10.1016/j.jscs.2021.101326

    Article  Google Scholar 

  31. Crini, G.: Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006). https://doi.org/10.1016/j.biortech.2005.05.001

    Article  Google Scholar 

  32. Hou, Y., Yan, S., Huang, G., Yang, Q., Huang, S., Cai, J.: Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water. Bioresour. Technol. 303, 122939 (2020). https://doi.org/10.1016/j.biortech.2020.122939

    Article  Google Scholar 

  33. de Araújo Padilha, C.E., da Costa Nogueira, C., de Santana Souza, D.F., de Oliveira, J.A., dos Santos, E.S.: Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal. Ind. Crops Prod. 146, 112167 (2020). https://doi.org/10.1016/j.indcrop.2020.112167

    Article  Google Scholar 

  34. Shuai, L., Amiri, M.T., Questell-Santiago, Y.M., Héroguel, F., Li, Y., Kim, H., Meilan, R., Chapple, C., Ralph, J., Luterbacher, J.S.: Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016). https://doi.org/10.1126/science.aaf7810

    Article  Google Scholar 

  35. Saber, M., El Hamdaoui, L., El Moussaouiti, M., Tabyaoui, M.: Extraction and characterization of lignin from Moroccan Thuya. Its application as adsorbent of methylene blue from aqueous solution. Cellul. Chem. Technol. 56, 69–81 (2022). https://doi.org/10.3812/CelluloseChemTechnol.2022.56.06

    Article  Google Scholar 

  36. Feng, N., Ren, L., Wu, H., Wu, Q., Xie, Y.: New insights on structure of lignin-carbohydrate complex from hot water pretreatment liquor. Carbohydr. Polym. 224, 115130 (2019). https://doi.org/10.1016/j.carbpol.2019.115130

    Article  Google Scholar 

  37. Giummarella, N., Zhang, L., Henriksson, G., Lawoko, M.: Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Adv. 6, 42120–42131 (2016). https://doi.org/10.1039/c6ra02399a

    Article  Google Scholar 

  38. Steinbach, D., Kruse, A., Sauer, J.: Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Convers. Biorefinery. 7, 247–274 (2017). https://doi.org/10.1007/s13399-017-0243-0

    Article  Google Scholar 

  39. Trajano, H.L., Engle, N.L., Foston, M., Ragauskas, A.J., Tschaplinski, T.J., Wyman, C.E.: The fate of lignin during hydrothermal pretreatment. Biotechnol. Biofuels 6, 1–16 (2013). https://doi.org/10.1186/1754-6834-6-110

    Article  Google Scholar 

  40. Sun, Y.C., Wen, J.L., Xu, F., Sun, R.C.: Fractional and structural characterization of organosolv and alkaline lignins from Tamarix austromogoliac. Sci. Res. Essays 5, 3850–3864 (2010)

    Google Scholar 

  41. Michelin, M., Liebentritt, S., Vicente, A.A., Teixeira, J.A.: Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: physicochemical and antioxidant properties. Int. J. Biol. Macromol. 120, 159–169 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.046

    Article  Google Scholar 

  42. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  43. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  44. Freundlich, H.: Over the Adsorption in Solution. J. Phys. Chem. A. 57U, 385–470 (1907). https://urldefense.com/v3/. https://doi.org/10.1515/zpch-1907-5723

  45. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Franklin Inst. 183, 102–105 (1917). https://urldefense.com/v3/. https://doi.org/10.1016/S0016-0032(17)90938

  46. Lagergren, S.: About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakademiens Handl 24, 1–39 (1898)

    Google Scholar 

  47. Blanchard, G., Maunaye, M., Martin, G.: Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501–1507 (1984). https://doi.org/10.1016/0043-1354(84)90124-6

    Article  Google Scholar 

  48. Khadhri, N., El Khames Saad, M., Ben Mosbah, M., Moussaoui, Y.: Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J. Environ. Chem. Eng. 7, 102775 (2019). https://doi.org/10.1016/j.jece.2018.11.020

    Article  Google Scholar 

  49. Kumar, A., Jena, H.M.: Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4. J. Environ. Chem. Eng. 5, 2032–2041 (2017). https://doi.org/10.1016/j.jece.2017.03.035

    Article  Google Scholar 

  50. Yang, T., Li, Z., Wei, W., Wang, X., Liu, F., Xu, X., Liu, Z.: Antioxidant properties of lignin extracted from cotton stalks by ethanol solution-assisted liquid hot water before and after adding supercritical CO2. J. CO2 Util. 58, 1892 (2022). https://doi.org/10.1016/j.jcou.2022.101892

    Article  Google Scholar 

  51. Lei, M., Zhang, H., Zheng, H., Li, Y., Huang, H., Xu, R.: Characterization of lignins isolated from alkali treated prehydrolysate of corn stover. Chin. J. Chem. Eng. 21, 427–433 (2013). https://doi.org/10.1016/S1004-9541(13)60468-1

    Article  Google Scholar 

  52. Sun, Y., Wang, T., Han, C., Lv, X., Bai, L., Sun, X., Zhang, P.: Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: selective adsorption and mechanism studies. Bioresour. Technol. 344, 126186 (2022). https://doi.org/10.1016/j.biortech.2021.126186

    Article  Google Scholar 

  53. Faix, O.: Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45, 21–28 (1991). https://doi.org/10.1515/hfsg.1991.45.s1.21

    Article  Google Scholar 

  54. Yang, H., Yan, R., Chen, H., Lee, D.H., Liang, D.T., Zheng, C.: Mechanism of palm oil waste pyrolysis in a packed bed. Energy Fuels 20, 1321–1328 (2006). https://doi.org/10.1021/ef0600311

    Article  Google Scholar 

  55. de Oliveira Simões Saliba, E., Rodriguez, N.M., de Antônio Lemos Morais, S., Piló-Veloso, D.: Ligninas: métodos de obtenção e caracterização química. Ciência Rural 31, 917–928 (2001). https://doi.org/10.1590/s0103-84782001000500031

    Article  Google Scholar 

  56. Wei, Y.N., Liu, H.M., Fu, C.Q., Qin, Z., Wang, C.Y., Yang, M.X., He, J.: Structural changes for lignin from Chinese quince during the sequential fractionation of cell wall polysaccharides. Process Biochem. 113, 167–176 (2022). https://doi.org/10.1016/j.procbio.2021.12.033

    Article  Google Scholar 

  57. Del Río, J.C., Rencoret, J., Marques, G., Li, J., Gellerstedt, G., Jesús, J.B., Martínez, A.T., Gutiérrez, A.N.A.: Structural characterization of the lignin from jute (Corchorus capsuiaris) fibers. J. Agric. Food Chem. 57, 10271–10281 (2009). https://doi.org/10.1021/jf900815x

    Article  Google Scholar 

  58. Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., Weckhuysen, B.M.: Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem.—Int. Ed. 55, 8164–8215 (2016). https://doi.org/10.1002/anie.201510351

    Article  Google Scholar 

  59. Ralph, S., Ralph, J., Landucci, L., Service, U.F., Ralph, J.: NMR database of lignin and cell wall model compounds (2009). https://urldefense.com/v3. https://www.glbrc.org/databases_and_software/nmrdatabase/NMR_DataBase_2009_Intro_and_Structure-Index.pdf

  60. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  61. Zou, W., Bai, H., Gao, S., Li, K.: Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. Korean J. Chem. Eng. 30, 111–122 (2013). https://doi.org/10.1007/s11814-012-0096-y

    Article  Google Scholar 

  62. Xie, A., Dai, J., Chen, X., Ma, P., He, J., Li, C., Zhou, Z., Yan, Y.: Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation. Chem. Eng. J. 304, 609–620 (2016). https://doi.org/10.1016/j.cej.2016.06.138

    Article  Google Scholar 

  63. Tan, Y., Wang, X., Xiong, F., Ding, J., Qing, Y., Wu, Y.: Preparation of lignin-based porous carbon as an efficient absorbent for the removal of methylene blue. Ind. Crops Prod. 171, 113980 (2021). https://doi.org/10.1016/j.indcrop.2021.113980

    Article  Google Scholar 

  64. Wang, A., Zheng, Z., Li, R., Hu, D., Lu, Y., Luo, H., Yan, K.: Biomass-derived porous carbon highly efficient for removal of Pb(II) and Cd(II). Green Energy Environ. 4, 414–423 (2019). https://doi.org/10.1016/j.gee.2019.05.002

    Article  Google Scholar 

  65. Garg, V.K., Gupta, R., Yadav, A.B., Kumar, R.: Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Technol. 89, 121–124 (2003). https://doi.org/10.1016/S0960-8524(03)00058-0

    Article  Google Scholar 

  66. Scotti, R., Lima, E.C., Benvenutti, E.V., Piatnicki, C.M.S., Dias, S.L.P., Gushikem, Y., Kubota, L.T.: Azul de metileno imobilizado na celulose/TiO2 e SiO 2/TiO2: propriedades eletroquímicas e planejamento fatorial. Quim. Nova 29, 208–212 (2006). https://doi.org/10.1590/S0100-40422006000200006

    Article  Google Scholar 

  67. Alidadi, H., Dolatabadi, M., Davoudi, M., Barjasteh-Askari, F., Jamali-Behnam, F., Hosseinzadeh, A.: Enhanced removal of tetracycline using modified sawdust: Optimization, isotherm, kinetics, and regeneration studies. Process Saf. Environ. Prot. 117, 51–60 (2018). https://doi.org/10.1016/j.psep.2018.04.007

    Article  Google Scholar 

  68. Klapiszewski, Ł, Wysokowski, M., Majchrzak, I., Szatkowski, T., Nowacka, M., Siwińska-Stefańska, K., Szwarc-Rzepka, K., Bartczak, P., Ehrlich, H., Jesionowski, T.: Preparation and characterization of multifunctional chitin/lignin materials. J. Nanomater. (2013). https://doi.org/10.1155/2013/425726

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21706026)

Funding

This work was supported by the National Natural Science Foundation of China (Grant No: [21706026]).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XW, FL, ZL; Methodology: TY, ZL; Formal analysis and investigation: TY, XX; Writing—original draft preparation: TY; Writing—review and editing: ZL, ZL; Funding acquisition: XW; Resources: WW; Supervision: WW, XX.

Corresponding author

Correspondence to Zhijun Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Li, Z., Wei, W. et al. Structure and Properties of Lignin Extracted from Cotton Stalk by Non-polluting Ethanol-Assisted Hot Water Pretreatment and its High-Value Utilization for Methylene Blue Removal. Waste Biomass Valor 14, 2085–2101 (2023). https://doi.org/10.1007/s12649-022-01996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01996-3

Keywords

Navigation