Skip to main content
Log in

Valorization of Cassava Bagasse Using Co-culture of Aspergillus oryzae VS1 and Sporidiobolus pararoseus O1 in Solid-State Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cassava bagasse is a by-product of the starch processing industry which contains a high quantity of starch and low protein content. Consequently, its application in animal feed is limited. In this study, solid-state fermentation was carried out to valorize this by-product. Two strains Aspergillus oryzae VS1 and Sporidiobolus pararoseus O1 were co-cultivated on cassava bagasse at 30 °C and 70% moisture to co-enrich protein, lipid, and β-carotene of cassava bagasse. Our result showed that at the inoculum size of log 9 cells of S. pararoseus O1 and log 6 spores of A. oryzae VS1 per gram of dry cassava bagasse, the protein, lipid, and β-carotene improved to 7.92%, 50.3 mg/g and 14.96 µg/g, respectively. Specially, the digestibility of organic matter increased 1.3-fold comparing to the initial cassava bagasse. To improve β-carotene content, several compounds were individually added to the solid-state fermentation namely ethanol, hydrogen peroxide, or citrate. The highest β-carotene accumulation of 48 µg/g dry cassava bagasse was attained using 1% citrate. Co-cultivation of A. oryzae and S. pararoseus using solid-state fermentation is a suitable approach to increase the nutritional value and β-carotene composition of cassava bagasse for animal feed application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study is available in this manuscript.

References

  1. IMARC.: Cassava processing market: global industry trends, share, size, growth, opportunity and forecast 2021–2026 (2021)

  2. Newby, J., Smith, D., Cramb, R., Delaquis, E., Yadav, L.: Cassava value chains and livelihoods in South-East-Asia, A regional research symposium held at Pematang Siantar North Sumatra, Indonesia, 1–5, July 2019. ACIAR proceedings Series, No. 148. Australia Center for International Agricultural Research (2020)

  3. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T., Vandenberghe, L.P.S., Mohan, R.: Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol. 74, 81–87 (2000). https://doi.org/10.1016/S0960-8524(99)00143-1

    Article  Google Scholar 

  4. John, R.P.: Biotechnological potentials of cassava bagasse. In: SinghNee Nigam, P., Pandey, A. (eds.) Biotechnology for Agro-industrial Residues Utilisation: Utilisation of Agro-residues, pp. 225–237. Springer, Dordrecht (2009)

    Chapter  Google Scholar 

  5. Lounglawan, P., Khungaew, M., Suksombat, W.: Silage production from cassava peel and cassava pulp as energy source in cattle diets. J. Anim. Vet. Adv. 10, 1007–1011 (2011). https://doi.org/10.3923/javaa.2011.1007.1011

    Article  Google Scholar 

  6. Green, A., Fascetti, A.: Meeting the vitamin A requirement: The efficacy and importance of β-carotene in animal species. Sci. World J. 2016, 1–22 (2016). https://doi.org/10.1155/2016/7393620

  7. Cui, B., Liu, S., Wang, Q., Lin, X.: Effect of beta-carotene on immunity function and tumour growth in hepatocellular carcinoma rats. Molecules. 17, 8595–8603 (2012). https://doi.org/10.3390/molecules17078595

    Article  Google Scholar 

  8. Jaswir, I., Noviendri, D., Hasrini, R., Octavianti, F.: Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5, 7119–7131 (2011). https://doi.org/10.5897/JMPRx11.011

    Article  Google Scholar 

  9. Slaný, O., Klempová, T., Marcinčák, S., Čertík, M.: Production of high-value bioproducts enriched with γ-linolenic acid and β-carotene by filamentous fungi Umbelopsis isabellina using solid-state fermentations. Ann. Microbiol. 70, 5 (2020). https://doi.org/10.1186/s13213-020-01545-0

    Article  Google Scholar 

  10. Mata-Gómez, L.C., Montañez, J.C., Méndez-Zavala, A., Aguilar, C.N.: Biotechnological production of carotenoids by yeasts: an overview. Microb. Cell. Fact. 13, 12 (2014). https://doi.org/10.1186/1475-2859-13-12

    Article  Google Scholar 

  11. Roadjanakamolson, M., Suntornsuk, W.: Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis. J. Microbiol. Biotechnol. 20, 525–531 (2010)

    Google Scholar 

  12. Abdelhafez, A.A., Husseiny, S.M., Abdel-Aziz Ali, A., Sanad, H.M.: Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett–Burman design and central composite design. Ann. Agric. Sci. 61, 87–96 (2016). https://doi.org/10.1016/j.aoas.2016.01.005

    Article  Google Scholar 

  13. Lateef, A., Gueguim-Kana, E.B.: Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Rom Biotechnol. Lett. 17, 7309–7316 (2012)

    Google Scholar 

  14. Adeoye, A.O., Lateef, A., Gueguim-Kana, E.B.: Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 4, 568–574 (2015). https://doi.org/10.1016/j.bcab.2015.08.004

    Article  Google Scholar 

  15. Lateef, A., Oloke, J., Kana, E., Oyeniyi, O., Onifade, O., Oyeleye, A., Oladosu, O., Oyelami, A.: Improving the quality of agro-wastes by solid-state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 24, 2369–2374 (2008). https://doi.org/10.1007/s11274-008-9749-8

    Article  Google Scholar 

  16. Manan, M., Webb, C.: Design aspects of solid state fermentation as applied to microbial bioprocessing. J. Appl. Biotechnol. Bioeng. 4, 1–25 (2017). https://doi.org/10.15406/jabb.2017.04.00094

    Article  Google Scholar 

  17. Soccol, C.R., Costa, E.S.F.d., Letti, L.A.J., Karp, S.G., Woiciechowski, A.L., Vandenberghe, L.P.d.S.: Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 1, 52–71 (2017). https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  18. Martins, S., Mussatto, S.I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C.N., Teixeira, J.A.: Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 29, 365–373 (2011). https://doi.org/10.1016/j.biotechadv.2011.01.008

    Article  Google Scholar 

  19. Lizardi-Jiménez, M.A., Hernández-Martínez, R.: Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech. 7, 44–44 (2017). https://doi.org/10.1007/s13205-017-0692-y

    Article  Google Scholar 

  20. Cheng, Y., Liu, C., Cui, Y., Lv, T., Guo, Y., Liang, J., Qian, H.: Sporidiobolus pararoseus wall-broken powder ameliorates oxidative stress in diabetic nephropathy in type-2 diabetic mice by activating the Nrf2/ARE pathway. RSC Adv. 9, 8394–8403 (2019). https://doi.org/10.1039/C8RA10484K

    Article  Google Scholar 

  21. Han, M., Xu, J.-Z., Liu, Z.-M., Qian, H., Zhang, W.-G.: Co-production of microbial oil and exopolysaccharide by the oleaginous yeast Sporidiobolus pararoseus grown in fed-batch culture. RSC Adv. 8, 3348–3356 (2018). https://doi.org/10.1039/C7RA12813D

    Article  Google Scholar 

  22. Wang, H., Hu, B., Liu, J., Qian, H., Xu, J., Zhang, W.: Co-production of lipid, exopolysaccharide and single-cell protein by Sporidiobolus pararoseus under ammonia nitrogen-limited conditions. Bioprocess. Biosyst Eng. 43, 1403–1414 (2020). https://doi.org/10.1007/s00449-020-02335-3

    Article  Google Scholar 

  23. Tapingkae, W., Panyachai, K., Yachai, M., Doan, H.V.: Effects of dietary red yeast (Sporidiobolus pararoseus) on production performance and egg quality of laying hens. J. Anim. Physiol. Anim. Nutr. 102, e337–e344 (2018). https://doi.org/10.1111/jpn.12751

    Article  Google Scholar 

  24. Kot, A.M., Kieliszek, M., Piwowarek, K., Błażejak, S., Mussagy, C.U.: Sporobolomyces and Sporidiobolus – non-conventional yeasts for use in industries. Fungal Biol. Rev. 37, 41–58 (2021). https://doi.org/10.1016/j.fbr.2021.06.001

    Article  Google Scholar 

  25. Hassan, M., Yang, Q., Xiao, Z.: Covalent immobilization of glucoamylase enzyme onto chemically activated surface of κ-carrageenan. Bull. Natl. Res. Cent. 43, e102 (2019). https://doi.org/10.1186/s42269-019-0148-0

    Article  Google Scholar 

  26. Ghose, T.K.: Measurement of cellulase activities. Pure. Appl. Chem. 59, 257–268 (1987)

    Article  Google Scholar 

  27. Michelon, M., de Matos de Borba, T., da Silva Rafael, R., Burkert, C.A.V., de Medeiros Burkert, J.F.: Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Sci. Biotechnol. 21, 1–8 (2012). https://doi.org/10.1007/s10068-012-0001-9

    Article  Google Scholar 

  28. López, J., Cataldo, V.F., Peña, M., Saa, P.A., Saitua, F., Ibaceta, M., Agosin, E.: Build your bioprocess on a solid strain—β-carotene production in recombinant Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. (2019). https://doi.org/10.3389/fbioe.2019.00171

    Article  Google Scholar 

  29. Folch, J., Lees, M., Stanley, S.: G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Article  Google Scholar 

  30. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Article  Google Scholar 

  31. AFIA.: Laboratory methods manual. A reference manual of standard methods for the analysis of fodder. Australia Fodder Industry Association LTD, Melbourne (2011)

  32. Pham, T.A., Pham, K.N., To, K.A.: Efficient starch recovery from cassava bagasse: role of cellulase and pectinase. Vietnam J. Sci. Technol. 54, 401–409 (2019)

    Google Scholar 

  33. Han, M., He, Q., Zhang, W.G.: Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem. Biotechnol. 42, 293–303 (2012). https://doi.org/10.1080/10826068.2011.583974

    Article  Google Scholar 

  34. Chaiyaso, T., Manowattana, A.: Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507. Prep Biochem. Biotechnol. 48, 13–23 (2018). https://doi.org/10.1080/10826068.2017.1381620

    Article  Google Scholar 

  35. Giani, M., Martínez-Espinosa, R.: Carotenoids as a protection mechanism against oxidative stress in Haloferax mediterranei. Antioxidants 9, 1060 (2020). https://doi.org/10.3390/antiox9111060

    Article  Google Scholar 

  36. Sriherwanto, C.: Studies on the solid state fermentation of cassava bagasse for animal feed. Doctorate dissertation, University Hamburg, Germany (2010)

  37. Garay, L.A., Sitepu, I.R., Cajka, T., Chandra, I., Shi, S., Lin, T., German, J.B., Fiehn, O., Boundy-Mills, K.L.: Eighteen new oleaginous yeast species. J. Ind. Microbiol. Biotechnol. 43, 887–900 (2016). https://doi.org/10.1007/s10295-016-1765-3

    Article  Google Scholar 

  38. Krishna, C., Nokes, S.: Influence of inoculum size on phytase production and growth in solid-state fermentation by Aspergillus niger. Trans. ASAE 44, (2001). https://doi.org/10.13031/2013.6224

  39. Abdullah, A.L., Tengerdy, R.P., Murphy, V.G.: Optimization of solid substrate fermentation of wheat straw. Biotechnol. Bioeng. 27, 20–27 (1985). https://doi.org/10.1002/bit.260270104

    Article  Google Scholar 

  40. Lonsane, B.K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N.P., Ramakrishna, M., Krishnaiah, M.M.: Scale-up strategies for solid state fermentation systems. Process. Biochem. 27, 259–273 (1992). https://doi.org/10.1016/0032-9592(92)85011-P

    Article  Google Scholar 

  41. Al-Asheh, S., Duvnjak, Z.: Phytase production and decrease of phytic acid content in canola meal by Aspergillus carbonarius in solid-state fermentation. World J. Microbiol. Biotechnol. 11, 228–231 (1995). https://doi.org/10.1007/bf00704655

    Article  Google Scholar 

  42. Yao, W., Nokes, S.E.: The use of co-culturing in solid substrate cultivation and possible solutions to scientific challenges. Biofuel Bioprod. Biorefin. 7, 361–372 (2013). https://doi.org/10.1002/bbb.1389

    Article  Google Scholar 

  43. Raza, F., Raza, N.A., Hameed, U., Haq, I., Mariam, I.: Solid state fermentation for the production of beta-glucosidase by co-culture of Aspergillus niger and A. oryzae. Pak. J. Bot. 43, 75–83 (2011)

    Google Scholar 

  44. Aro, S.: Improvement in the nutritive quality of cassava and its by-products through microbial fermentation. Afr. J. Biotechnol. 725, 4789–4797 (2009)

    Google Scholar 

  45. Oboh, G.: Nutrient enrichment of cassava peels using a mixed culture of Saccharomyces cerevisae and Lactobacillus spp. solid media fermentation techniques. Electron. J. Biotechnol. (2006). https://doi.org/10.2225/vol9-issue1-fulltext-1

    Article  Google Scholar 

  46. Yao, W., Nokes, S.: The use of co-culturing in solid substrate cultivation and possible solutions to scientific challenges. Biofuel Bioprod. Biorefin. (2013). https://doi.org/10.1002/bbb.1389

    Article  Google Scholar 

  47. Pham, T.A., Hoang, T.N.T., Phung, T.T., To, K.A.: Factors enhancing the accumulation of beta-carotene in Rhodotorula taiwanensis CT1. Vietnam J. Sci. Technol. 58, 299–306 (2020)

    Article  Google Scholar 

  48. Gu, W.L., An, G.H., Johnson, E.A.: Ethanol increases carotenoid production in Phaffia rhodozyma. J. Ind. Microbiol. Biotechnol. 19, 114–117 (1997). https://doi.org/10.1038/sj.jim.2900425

    Article  Google Scholar 

  49. Marova, I., Breierová, E., Kočí, R., Friedl, Z., Slovak, B., Pokorna, J.: Influence of exogenous stress factors on production of carotenoids by some strains of cartenogenic yeasts. Ann. Microbiol. 54, 73–85 (2004)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Vietnam’s Ministry of Education and Training (MOET), Grant No. B2019-BKA-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Anh Pham.

Ethics declarations

Conflict of interest

The authors have no conflict of interst to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.A., Tran, L.N., Dam, T.H. et al. Valorization of Cassava Bagasse Using Co-culture of Aspergillus oryzae VS1 and Sporidiobolus pararoseus O1 in Solid-State Fermentation. Waste Biomass Valor 13, 3003–3012 (2022). https://doi.org/10.1007/s12649-022-01724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01724-x

Keywords

Navigation