Skip to main content
Log in

Xylose Release from Sunflower Stalk by Coupling Autohydrolysis and Enzymatic Post-Hydrolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

In this study, to obtain xylose-based fermentation media from autohydrolysis liquors of sunflower stalk by using commercial xylanase formulation was aimed. Xylose is generally produced from xylan by diluted acid hydrolysis that causes the formation of some unwanted compounds during the process. As an alternative to dilute acid hydrolysis method, enzymatic hydrolysis of xylan can provide more specific hydrolysis under moderate conditions and does not cause the formation of undesirable compounds.

Methods

Xylose production was carried out with Trichoderma longibrachiatum xylanase on solubilized xylan form of sunflower stalk, which was hydrothermally pretreated for 1 h at 160 °C. The effects of substrate concentration and enzyme activity were investigated for the production of xylose. To obtain a high xylose yield and selectivity, the optimization study was conducted by the response surface methodology.

Results

The optimum substrate concentration and enzyme activity were found as 60 mg ds/mL CAL and 234 U/mL, respectively. Under the optimum condition, xylose yield and selectivity were found to be 69.5% and 8.2 g/g, respectively.

Conlusion

This study showed that xylose could be produce with a high yield without requiring a neutralization process and corrosive chemical reagent apart from water.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walsh, M.K., Khliaf, H.F., Shakir, K.A.: Production of xylitol from agricultural waste by enzymatic methods. Am. J. Agric. Biol. Sci. (2018). https://doi.org/10.3844/ajabssp.2018.1.8

    Article  Google Scholar 

  2. Rafiqul, S.M., Sakinah, A.M.M., Karim, M.R.: Production of xylose from meranti wood sawdust by dilute acid hydrolysis. Appl. Biochem. Biotechnol. (2014). https://doi.org/10.1007/s12010-014-1059-z

    Article  Google Scholar 

  3. Liavoga, A.B., Bian, Y., Seib, P.A.: Release of d-xylose from wheat strawby acid and xylanase hydrolysis and purification of xylitol. J. Agric. Food Chem. (2007). https://doi.org/10.1021/jf070862k

    Article  Google Scholar 

  4. Mohamad, N.L., Kamal, S.M.M., Mokhtar, M.N.: Xylitol bioproduction: a review of recent studies. Food Rev. Int. (2015). https://doi.org/10.1080/87559129.2014.961077

    Article  Google Scholar 

  5. Vazquez, M.J., Alonso, J.L., Donminguez, H., Parajo, J.C.: Production of xylose-containing fermentation media by enzymatic post-hydrolysis of oligomers produced by corn cob autohydrolysis. World J. Microb. Biotechnol. 17, 817–822 (2001)

    Article  Google Scholar 

  6. Bajpai, P.: Structure of lignocellulosic biomass. In: Pratima, B. (ed.) Pretreatment of lignocellulosic biomass for biofuel production, pp. 7–12. Springer, Singapore (2016)

    Chapter  Google Scholar 

  7. Arora, A., Nandal, P., Singh, J., Verma, M.L.: Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Mater. Sci. Energy Technol. (2020). https://doi.org/10.1016/j.mset.2019.12.003

    Article  Google Scholar 

  8. Moreira, L.R.S., Filho, E.X.F.: Insights into the mechanism of enziymatic hydrolysis of xylan. Appl. Microbiol. Biotechnol. (2016). https://doi.org/10.1007/s00253-016-7555-z

    Article  Google Scholar 

  9. Sun, S., Sun, S., Cao, X., Sun, R.: The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores. Technol. (2016). https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  10. Naidu, D.S., Hlangothi, S.P., John, M.J.: Bio-based products from xylan: a review. Carbohyd. Polym. (2018). https://doi.org/10.1016/j.carbpol.2017.09.064

    Article  Google Scholar 

  11. Rivas, B., Dominguez, J.M., Domingues, H., Parajo, J.C.: Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microb. Technol. (2002). https://doi.org/10.1016/S0141-0229(02)00098-4

    Article  Google Scholar 

  12. Akpinar, O., Gunay, K., Yilmaz, Y., Levent, O., Bostanci, S.: Enzymatic processing and antioxidant activity of agricultural waste autohydroysis liquors. Bioresourses 5, 699–711 (2010)

    Google Scholar 

  13. WanAzelee, N.I.W., Jahim, J.M., Ismail, A.F., Fuzi, S.F.Z.M., Rahman, R.A., Ghazali, N.F., Illias, R.M.: Enzymatic hydrolysis of pretreated kenaf using a recombinant xylanase: effects of reaction conditions for optimum hemicellulose hydrolysis. Am. J. Agric. Biol. Sci. (2016). https://doi.org/10.3844/ajabssp.2016.54.66

    Article  Google Scholar 

  14. Barberousse, H., Kamoun, A., Chaabouni, M., Giet, J.M., Roiseux, O., Paquot, M., Deroannea, C., Bleckera, C.: Optimization of enzymatic extraction of ferulic acid from wheat bran, using response surface methodology and characterization of the resulting fractions. J. Sci. Food. Agric. (2009). https://doi.org/10.1002/jsfa.3630

    Article  Google Scholar 

  15. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. (2003). https://doi.org/10.1007/s10295-003-0049-x

    Article  Google Scholar 

  16. Jiang, K., Li, L., Long, L., Ding, S.: Comprehensive evaluation of combining hydrothermal pretreatment (autohydrolysis) with enzymatic hydrolysis for efficient release of monosaccharides and ferulic acid from corn bran. Ind. Crops Prod. (2018). https://doi.org/10.1016/j.indcrop.2018.01.047

    Article  Google Scholar 

  17. Khalili, F., Amiri, H.: Integrated processes for production of cellulosic and hemicellulosic biobutanol from sweet sorghum bagasse using autohydrolysis. Ind. Crops Prod. (2019). https://doi.org/10.1016/j.indcrop.2019.111918

    Article  Google Scholar 

  18. Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew. Sustain. Energy Rev. (2013). https://doi.org/10.1016/j.rser.2012.11.069

    Article  Google Scholar 

  19. Zhang, W., Zhang, X., Lei, F., Jiang, J.: Co-production bioethanol and xylooligosaccharides from sugarcane bagasse via autohydrolysis pretreatment. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.10.034

    Article  Google Scholar 

  20. Gandla, M.L., Martın, C., Jönsson, L.J.: Analytical enzymatic saccharification of lignocellulosic biomass for conversion to biofuels and bio-based chemicals. Energies (2018). https://doi.org/10.3390/en11112936

    Article  Google Scholar 

  21. Moniz, P., Ho, A.L., Duarte, L.C., Kolida, S., Rastall, R.A., Pereira, H., Carvalheiro, F.: Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohyd. Polym. (2016). https://doi.org/10.1016/j.carbpol.2015.09.046

    Article  Google Scholar 

  22. Konyali, S.: Sunflower production, consumption, foreign trade and agricultural policies in Turkey. Soc. Sci. Res. J. 6(4), 11–19 (2017)

    Google Scholar 

  23. Anonymous: https://www.statista.com/statistics/267271/worldwide-oilseed-production-since-2008/ (2020). Accessed 28 Dec 2020

  24. FAO: www.faostat.org (2019). Accessed 28 Dec 2020

  25. Kim, H.S., Oh, Y.H., Jang, Y.-A., Kang, K.H., David, Y., Yu, J.H., Song, B.K., Choi, J., Chang, Y.K., Joo, J.C., Park, S.J.: Recombinant ralstoniaeutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb. Cell Fact. (2016). https://doi.org/10.1186/s12934-016-0495-6

    Article  Google Scholar 

  26. Sharma, S.K., Kalra, K.L., Grewal, H.S.: Fermentation of enzymatically saccharified sunflower stalks for ethanol production and its scale up. Biores. Technol. (2002). https://doi.org/10.1016/S0960-8524(02)00076-7

    Article  Google Scholar 

  27. Binici, H., Aksogan, O., Dıncer, A., Luga, E., Eken, M., Isikaltun, O.: Thermal insulation material production using vermiculite, sunflower stalk and wheat stalk. Therm. Sci. Eng. Prog. (2020). https://doi.org/10.1016/j.tsep.2020.100567

    Article  Google Scholar 

  28. Akpinar, O., Levent, O., Sabanci, S., Uysal, R.S., Sapci, B.: Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. BioResources 6, 4103–4116 (2011)

    Google Scholar 

  29. Amiri, H., Karimi, K.: Autohydrolysis: a promising pretreatment for the improvement of acetone, butanol, and ethanol production from woody materials. Chem. Eng. Sci. (2015). https://doi.org/10.1016/j.ces.2015.07.020

    Article  Google Scholar 

  30. Eom, I.-Y., Yu, J.-H.: Structural characterization of the solid residue produced by hydrothermal treatment of sunflower stalks and subsequent enzymatic hydrolysis. J. Ind. Eng. Chem. (2015). https://doi.org/10.1016/j.jiec.2014.07.044

    Article  Google Scholar 

  31. Pino, M.S., Rodriguez-Jasso, R.M., Michelin, M., Ruiz, H.A.: Enhancement and modeling of enzymatic hydrolysis on cellulose from agavebagasse hydrothermally pretreated in a horizontal bioreactor. Carbohyd. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.01.111

    Article  Google Scholar 

  32. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., Castro, E.: Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enz. Microb. Technol. (2008). https://doi.org/10.1016/j.enzmictec.2007.09.002

    Article  Google Scholar 

  33. Agger, J., Vikso-Nielsen, A., Meyer, A.S.: Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. J. Agr. Food. Chem. (2010). https://doi.org/10.1021/jf100633f

    Article  Google Scholar 

  34. Phidelphia, P.A.: ASTM, Annual book of ASTM standards, American Society for Testing and Materials (04.09). (1993)

  35. Browning, L.: Methods of wood chemistry. Inter-Science Publishers, New York (1967)

    Google Scholar 

  36. Templeton, D., Ehrman, T.: Determination of acid- insoluble lignin in biomass, laboratory analytical procedure No. 003. National Renewable Energy Laboratory, Golden (1995)

    Google Scholar 

  37. Melton, L.D., Smith, B.G.: Determination of the uronic acid content of plant cell walls using a colorimetric assay. In: Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P. (eds.) Current protocols in food analytical chemistry Inc. Wiley, New York (2001)

    Google Scholar 

  38. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  39. William, S.: AOAC official methods of analysis (9.097). Scientific Association Dedicated to Analytical Excellence, Arlington (1997)

    Google Scholar 

  40. Garrote, G., Domınguez, H., Parajo, J.C.: Mild autohydrolysis: an environmentally friendly technology for xyloolgosaccharide production from wood. J. Chem. Biotechnol. (1999). https://doi.org/10.1002/(SICI)1097-4660(199911)74:11%3c1101::AID-JCTB146%3e3.0.CO;2-M

    Article  Google Scholar 

  41. Bailey, M.J., Biely, P., Poutanen, K.: Interlabratory testing of methods for assay of xylanase activity. J. Biotechnol. (1992). https://doi.org/10.1016/0168-1656(92)90074-J

    Article  Google Scholar 

  42. Hesami, S.M., Zilouei, H., Karimi, K., Asadinezhad, A.: Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment. Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2015.07.018

    Article  Google Scholar 

  43. Bassani, A., Fiorentini, C., Vellingiri, V., Moncalvo, A., Spigno, G.: Implementation of auto-hydrolysis process for the recovery of antioxidants and cellulose from wheat straw. Appl. Sci. (2020). https://doi.org/10.3390/app10176112

    Article  Google Scholar 

  44. Beaugrand, J., Chambat, G., Wong, V.W., Goubet, F., Rémond, C., Paes, G.: Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydrate Res. (2004). https://doi.org/10.1016/j.carres.2004.08.012

    Article  Google Scholar 

  45. Rahmani, N., Kahar, P., Lisdiyanti, P., Jaemin, L., Yopi Prasetya, B., Ogino, C., Kondo, A.: GH-10 and GH-11 endo-1,4-β-xylanase enzymes from Kitasatospora sp. produce xylose and xylooligosaccharides from sugarcane bagasse with no xylose inhibition. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2018.10.00

    Article  Google Scholar 

  46. Collins, T., Gerday, C., Feller, G.: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. (2005). https://doi.org/10.1016/j.femsre.2004.06.005

    Article  Google Scholar 

  47. Sabiha-Hanım, S., Noor, M.A.M., Rosma, A.: Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeisguineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour. Technol. (2011). https://doi.org/10.1016/j.biortech.2010.08.017

    Article  Google Scholar 

  48. Halici Demir, F., Akpinar, O.: Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi. Akademik Gıda (2018). https://doi.org/10.24323/akademik-gida.415613

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Gaziosmanpasa University Research Fund (2013/46).

Author information

Authors and Affiliations

Authors

Contributions

FHD: Methodology, investigation, data analysis, writing manuscript. ÖA: Supervision, reviewing.

Corresponding author

Correspondence to Fatmagül Halici-Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halici-Demir, F., Akpinar, Ö. Xylose Release from Sunflower Stalk by Coupling Autohydrolysis and Enzymatic Post-Hydrolysis. Waste Biomass Valor 13, 1491–1502 (2022). https://doi.org/10.1007/s12649-021-01606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01606-8

Keywords

Navigation