Skip to main content
Log in

The Microbial Devulcanisation of Waste Ground Tyre Rubber Using At. ferrooxidans DSMZ 14,882 and an Unclassified Sulphur-Oxidising Consortium

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Sol fraction, a measure of the free polymers removed from a ground tyre rubber (GTR) by organic solvent, and crosslink density, a measure of the number of sulphur crosslinks in the GTR, are necessary to determine whether a microbial activity causes both devulcanization and carbon degradation. The suitability of two sol fraction measurement methods to assessing the devulcanisation performance of At. ferrooxidans and a sulphur-oxidising consortium on industrial GTR was investigated.

Method

The devulcanisation performance and the relation between two Sol fraction methods (American Standard Testing Method, ASTM D6814 and the altered method) were determined for Acidithiobacillus ferrooxidans (DSMZ 14,882) and a mesophilic, sulphur-oxidising acidophilic consortium (UCT-30), used to treat unleached ground tyre rubber (untreated GTR) for 30 days.

Results

Both cultures were able to devulcanise untreated GTR after 30 days of incubation, despite the negative impact of the untreated GTR toxins on growth performance. The sulphur-oxidising consortium displayed the greatest toxin resistance and attached cells were observed at the surface of the untreated GTR particles. At. ferrooxidans (DSMZ 14,882) increased the Sol fraction of the GTR by 1.09 ± 0.9% (0.46 ± 0.1% ASTM) without causing any polymer degradation, whereas the sulphur-oxidising consortium increased the sol fraction by 0.56 ± 0.82% (− 0.26 ± 0.1% ASTM), but also caused polymer degradation at the surface of the GTR particles due to the activity of the heterotrophic microorganisms. In the comparison of the Sol fraction methods, ASTM yielded smaller absolute values, but better precision than the altered method. The absolute values for ASTM method fell within the range for the altered method due to the latter’s large variance. In addition, the ASTM method produced a change in sol fraction (Δsol) that was more consistent across the unleached GTR tested than the altered method

Conclusion

The ASTM sol fraction method provides better precision than the altered sol fraction method, making it more likely to indicate a statistically significant difference, despite the small absolute values measured. The altered method’s more aggressive treatment leads to larger observed changes in the sol fraction, making it easier to identify qualitative changes in the GTR properties. However, the higher temperature method also introduces increased variability leading to poor statistical significance of the results. Therefore, the results should not be reported without a quantification of the error.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sienkiewicz, M., Kucinska-lipka, J., Janik, H., Balas, A.: Progress in used tyres management in the European Union : A review. Waste Manag. 32, 1742–1751 (2012). https://doi.org/10.1016/j.wasman.2012.05.010

    Article  Google Scholar 

  2. Selbes, M., Yilmaz, O., Khan, A.A., Karanfil, T.: Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere 139, 617–623 (2015). https://doi.org/10.1016/j.chemosphere.2015.01.042

    Article  Google Scholar 

  3. Christiansson, M., Stenberg, B., Holst, O.: Toxic additives - A problem for microbial waste rubber desulphuriation. Resour. Environ. Biotechnol. 3, 11–21 (2000)

    Google Scholar 

  4. Isayev, A.I.: Recycling of Rubbers. In: Mark, J.E., Erman, B., Eirich, F.R. (eds.) The Science and Technology of Rubber, pp. 697–764. Academic Press, San Diego (2005)

    Google Scholar 

  5. Mark, J.E., Erman, B., Eirich, F. (eds.): Science and Technology of Rubber. Academic Press, San Diego (2005)

    Google Scholar 

  6. Holst, O., Stenberg, B., Christiansson, M.: Biotechnological possibilities for waste tyre-rubber treatment. Biodegradation 9, 301–310 (1998)

    Article  Google Scholar 

  7. Christiansson, M., Stenberg, B., Wallenberg, L.R., Holst, O.: Reduction of surface sulphur upon microbial devulcanization of rubber materials. Biotechnol. Lett. 20, 637–642 (1998). https://doi.org/10.1023/A:1005306220566

    Article  Google Scholar 

  8. Romine, R., Romine, M.F.: Rubbercycle: a bioprocess for surface modification of waste tyre rubber. Polym. Degrad. Stab. 59, 353–358 (1998)

    Article  Google Scholar 

  9. Adhikari, B., Maiti, S.: Reclamation and recycling of waste rubber. Prog. Poylmer Sci. 25, 909–948 (2000)

    Article  Google Scholar 

  10. Stevenson, K., Stallwood, B., Hart, A.G.: Tire Rubber Recycling and Bioremediation: A Review. Bioremediat. J. 12, 1–11 (2008). https://doi.org/10.1080/10889860701866263

    Article  Google Scholar 

  11. Jiang, G., Zhao, S., Luo, J., Wang, Y., Yu, W., Zhang, C.: Microbial Desulfurization for NR Ground Rubber by Thiobacillus ferrooxidans. J. Appl. Polym. Sci. 116, 2768–2774 (2010). https://doi.org/10.1002/app

    Article  Google Scholar 

  12. Raghavan, D., Guay, R., Torma, A.E.: A study of biodegradation of polyethylene and biodesulfurization of rubber - Scientific note. Appl. Biochem. Biotechnol. 24–25, 387–396 (1990). https://doi.org/10.1007/BF02920262

    Article  Google Scholar 

  13. Löffler, M.: Modifizierung von Altgummimehl durch mikrobielle Oberflächenentschwefelung - Ein Beitrag zum stofflichen Recycling von Altgummi, (1998)

  14. Li, Y., Zhao, S., Wang, Y.: Microbial desulfurization of ground tire rubber by Thiobacillus ferrooxidans. Polym. Degrad. Stab. 96, 1662–1668 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.06.011

    Article  Google Scholar 

  15. Li, Y., Zhao, S., Zhang, L., Wang, Y., Yu, W.: The effect of different Fe2+ concentrations in culture media on the recycling of ground tyre rubber by Acidithiobacillus Ferrooxidans YT-1. Annu. Rev. Microbiol. 63, 315–321 (2013)

    Article  Google Scholar 

  16. Li, Y., Zhao, S., Wang, Y.: Microbial desulfurization of Ground Tire Rubber by Sphingomonas sp.: A Novel Technology for Crumb Rubber Composites. J. Polym. Environ. 20, 372–380 (2012)

    Article  Google Scholar 

  17. Hu, M., Zhao, S., Li, C., Wang, B., Yao, C., Wang, Y.: The influence of different Tween surfactants on biodesulfurization of ground tire rubber by Sphingomonas sp. Polym. Degrad. Stab. 107, 91–97 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.04.025

    Article  Google Scholar 

  18. Jiang, G., Zhao, S., Li, W., Luo, J., Wang, Y., Zhou, Q., Zhang, C.: Microbial desulfurization of SBR ground rubber by Sphingomonas sp. and its utilisation as filler in NR compounds. Polym. Adv. Technol. 22, 2344–2351 (2011)

    Article  Google Scholar 

  19. Cui, X., Zhao, S., Wang, B.: Microbial desulfurization for ground tire rubber by mixed consortium-Sphingomonas sp. and Gordonia sp. Polym. Degrad. Stab. 128, 165–171 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.03.011

    Article  Google Scholar 

  20. Hu, M., Zhao, S., Li, C., Wang, B., Fu, Y., Wang, Y.: Biodesulfurization of vulcanized rubber by enzymes induced from Gordonia amicalisa. Polym. Degrad. Stab. 128, 8–14 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.02.017

    Article  Google Scholar 

  21. Bredberg, K., Persson, J., Christiansson, M., Stenberg, B., Holst, O.: Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus - A new method for rubber recycling. Appl. Microbiol. Biotechnol. 55, 43–48 (2001). https://doi.org/10.1007/s002530000499

    Article  Google Scholar 

  22. Turton, R., Shaeiwitz, J.A., Bhattacharyya, D., Whiting, W.B.: Analysis, Synthesis, and Design of Chemical Processes. Prentice-Hall Inc., New York (2018)

    Google Scholar 

  23. Johnson, B.D., Hallberg, K.B.: Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv. Microb. Physiol. 54, 201–255 (2009). https://doi.org/10.1016/S0065-2911(08)00003-9

    Article  Google Scholar 

  24. ASTM. D297–13 StandardTest Methods for Rubber Products — Chemical Analysis. West Conshohocken: ASTM International; 2013.

  25. ASTM. D6814–02 (2008) Standard Test Method for Determination of Percent Devulcanization of Crumb Rubber Based on Crosslink Density. West Conshohocken: ASTM International; 2011.

  26. Edwards, D.W.: Comparison of the Technical and Economic Feasibility of Devulcanisation Processes for Recycling Waste Tyres in South Africa [Master’s Thesis]. Stellenbosch University, Stellenbosch, South Africa (2016)

    Google Scholar 

  27. Horikx, M.M.: Chain scissions in a polymer network. J. Polym. Sci. 19, 445–454 (1956). https://doi.org/10.1002/pol.1956.120199305

    Article  Google Scholar 

  28. Edwards, D.W., Danon, B., Van Der, Gryp P.: Quantifying and comparing the selectivity for crosslink scission in mechanical and mechanochemical devulcanization processes. J. Appl. Polym. Sci. 43932, 1–10 (2016)

    Google Scholar 

  29. Li, Y., Zhao, S., Wang, Y.: Improvement of the properties of natural rubber/ground tire rubber composites through biological desulfurization of GTR. J. Polym. Res. 19, 9864 (2012). https://doi.org/10.1007/s10965-012-9864-y

    Article  Google Scholar 

  30. Kaewpetsch, B., Prasongsuk, S., Poompradup, S.: Devulcanization of natural rubber vulcanizates by Bacillus cereus TISTR 2651. Express Polymer Lett 13(10), 877–888 (2019)

    Article  Google Scholar 

  31. Tatangelo, V., Mangili, I., Caracino, P., Anzano, M., Najmi, Z., Bestetti, G., Collina, E., Franzetti, A., Lasagni, M.: Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 4462 strain. Appl. Microbial Biotechnol. 100(20), 8931–8942 (2016)

    Article  Google Scholar 

  32. Tatengelo, V., Mangili, I., Caracino, P., Bestetti, G., Collina, E., Anzano, M., Branduardi, P., Posteri, R., Porro, D., Lasagni, M., Franzetti, A.: Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR). Poly. Degr. Stab. 160, 102–109 (2019)

    Article  Google Scholar 

  33. Mangili, I., Lasagni, M., Anzano, M., Collina, E., Tatangelo, V., Franzetti, A., Caracino, P., Isayev, A.: Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polym. Degr. Stab. 121, 369–377 (2015)

    Article  Google Scholar 

  34. Allan, K.M.: The Microbial Devulcanisation of Waste Ground Tyre Rubber Using Acidophilic Microorganisms [Master’s Thesis]. Stellenbosch University, Stellenbosch, South Africa (2018)

    Google Scholar 

  35. Danon, B., Görgens, J.: Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochim. Acta. 621, 56–60 (2015). https://doi.org/10.1016/j.tca.2015.10.008

    Article  Google Scholar 

  36. Johnson, D.B., Kanao, T., Hedrich, S.: Redox transformations of iron at extremely low pH: Fundamental and applied aspects. Front. Microbiol. 3, 1–13 (2012). https://doi.org/10.3389/fmicb.2012.00096

    Article  Google Scholar 

  37. Rawlings D.E. The Bacteria, Biology and Biotechnology of Biomining [Internet]. Stellenbosch: Stellenbosch University; 1999. http://hdl.handle.net/10019.1/253

  38. Johnson, D.B.: The Biogeochemistry of Biomining. In: Barton, L.L., Mandl, M., Loy, A. (eds.) Geomicrobiology: Molecular and Environmental Perspective, pp. 401–426. Springer, New York (2010)

    Chapter  Google Scholar 

  39. Johnson, D.B.: Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol. 27(4), 307–317 (1998)

    Article  Google Scholar 

  40. Jensen, A.B., Webb, C., Jensen, A.B., Webb, C.: Ferrous Sulphate Oxidation Using Thiobacillus ferrooxidans : A Review. Process Biochem. 30, 225–236 (1995)

    Article  Google Scholar 

  41. Dopson, M., Baker-Austin, C., Koppineedi, P.R., Bond, P.L.: Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149, 1959–1970 (2003). https://doi.org/10.1099/mic.0.26296-0

    Article  Google Scholar 

  42. Mangolini F, Rossi A. Attenuated total reflection-Fourier transform infrared spetroscopy: A powerful tool for investigating polymer surfaces and interfaces. In: Sabbatini L (University of BAM, editor. Polymer Surface Characterization. Berlin/Boston: Walter de Gruyter GmbH; 2014. p. 113–51.

Download references

Acknowledgements

The authors are grateful to the National Research Foundation and the Recycling and Economic Development Initiative of South Africa for providing the funding and resources necessary for this study.

Author information

Authors and Affiliations

Authors

Contributions

KMA performed the experimental runs and the statistical analysis. OKKB, EVR, and JFG contributed to data interpretation and drafting of the final manuscript. All authors provided input to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Oscar K. K. Bedzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allan, K.M., Bedzo, O.K.K., van Rensburg, E. et al. The Microbial Devulcanisation of Waste Ground Tyre Rubber Using At. ferrooxidans DSMZ 14,882 and an Unclassified Sulphur-Oxidising Consortium. Waste Biomass Valor 12, 6659–6670 (2021). https://doi.org/10.1007/s12649-021-01468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01468-0

Keywords

Navigation