Skip to main content
Log in

Chitin–Glucan Complex from Pleurotus ostreatus Mushroom: Physicochemical Characterization and Comparison of Extraction Methods

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Chitin–glucan complex, an essential organic ingredient in the inner layer of the fungal cell wall, was isolated from the stalk and cap of Pleurotus ostreatus mushroom using two methods. In the first, powder of water-insoluble part was treated with NaOH in 3 successive baths, whereas in the second method an additional step was performed using acetic acid for the effective removal of soluble proteins, free chitosan and minerals. The influence of the deproteinization process on the yield and purity of the chitin-glucan complex was assessed by variation of NaOH concentration, reaction time and number of baths.The biopolymer recovered by the first method (yield from stalk 49% of dry weight, Cri 63.19%) presented residual proteins, lipids and minerals (5.52%) whereas the purest copolymer (yield 41.1% and minerals 3.22% of dry weight, Cri 58.43%) was produced using the second method from the stalk; the latter was mostly considered as a valuable waste from an available bio-resource that can easily be cultivated. X-ray diffraction (XRD), thermal analyses, scanning electron microscope, energy-dispersive X-ray spectroscopy, infrared spectroscopy, Kjeldahl method and Biuret test were employed to prove purity and study the physicochemical properties. Furthermore, the isolated chitin–glucan complex was compared with the chitin extracted from Agaricus bisporus mushroom. Fungal chitin could constitute a viable alternative to commercial chitin with better performance in adsorption applications, and in this respect, the results revealed that the isolation of chitinous polysaccharide from P. ostreatus (41.1%) was higher than from most cultivated mushrooms (7–36.72%).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

DTG:

Derivative thermogravimetry

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscope

EDS:

Energy dispersive spectrometer

FTIR:

Fourier transform infrared spectrometry

DA:

Degree of acetylation

CrI:

Crystallinity index

ChGCFm :

Chitin-glucan complex of the first method

ChGCSm :

Chitin-glucan complex of the second method

ChA.bisporus :

Chitin obtained from A. bisporus

AIM:

Alkali insoluble material

TN:

Total nitrogen

CN:

Nitrogen of ChGCSm

NPNNP:

Nitrogen of protein and non-protein components

PC:

Protein content

References

  1. Roca, C., Chagas, B., Farinha, I., Freitas, F., Mafra, L., Aguiar, F., Oliveira, R., Reis, M.A.M.: Production of yeast chitin–glucan complex from biodiesel industry byproduct. Process Biochem. 47, 1670–1675 (2012). https://doi.org/10.1016/j.procbio.2012.04.004

    Article  Google Scholar 

  2. Bzducha-Wróbel, A., Kieliszek, M., Błażejak, S.: Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur. Food Res. Technol. 237, 489–499 (2013). https://doi.org/10.1007/s00217-013-2016-8

    Article  Google Scholar 

  3. Farinha, I., Duarte, P., Pimentel, A., Plotnikova, E., Chagas, B., Mafra, L., Grandfils, C., Freitas, F., Fortunato, E., Reis, M.A.M.: Chitin–glucan complex production by Komagataella pastoris: downstream optimization and product characterization. Carbohydr. Polym. 130, 455–464 (2015). https://doi.org/10.1016/j.carbpol.2015.05.034

    Article  Google Scholar 

  4. Araújo, D., Ferreira, I.C., Torres, C.A., Neves, L., Freitas, F.: Chitinous polymers: extraction from fungal sources, characterization and processing towards value-added applications. J. Chem. Technol. Biotechnol. 95, 1277–1289 (2020). https://doi.org/10.1002/jctb.6325

    Article  Google Scholar 

  5. Hong, Y., Ying, T.: Characterization of a chitin-glucan complex from the fruiting body of Termitomyces albuminosus (Berk.) Heim. Int. J. Biol. Macromol. 134, 131–138 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.198

    Article  Google Scholar 

  6. Zelencova, L., Erdoǧan, S., Baran, T., Kaya, M.: Chitin extraction and chitosan production from Chilopoda (Scolopendra cingulata) with identification of physicochemical properties. Polym. Sci. Ser. A. 57, 437–444 (2015). https://doi.org/10.1134/S0965545X15040161

    Article  Google Scholar 

  7. Abdel-Rahman, R.M., Hrdina, R., Abdel-Mohsen, A.M., Fouda, M.M.G., Soliman, A.Y., Mohamed, F.K., Mohsin, K., Pinto, T.D.: Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107–120 (2015). https://doi.org/10.1016/j.ijbiomac.2015.06.027

    Article  Google Scholar 

  8. Hassainia, A., Satha, H., Boufi, S.: Chitin from Agaricus bisporus: Extraction and characterization. Int. J. Biol. Macromol. 117, 1334–1342 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.172

    Article  Google Scholar 

  9. Smiderle, F.R., Olsen, L.M., Carbonero, E.R., Baggio, C.H., Freitas, C.S., Marcon, R., Santos, A.R.S., Gorin, P.A.J., Iacomini, M.: Anti-inflammatory and analgesic properties in a rodent model of a (1→3), (1→6)-linked β-glucan isolated from Pleurotus pulmonarius. Eur. J. Pharmacol. (2008). https://doi.org/10.1016/j.ejphar.2008.08.028

    Article  Google Scholar 

  10. Majtán, J., Kumar, P., Koller, J., Dragúńová, J., Gabriž, J.: Induction of Metalloproteinase 9 secretion from human keratinocytes by Pleuran (β-Glucan from Pleurotus ostreatus). Zeitschrift für Naturforschung C. 64, 597–600 (2009). https://doi.org/10.1515/znc-2009-7-820

    Article  Google Scholar 

  11. Bulam, S., Üstün, N.Ş, Pekşen, A.: Evaluation of nutritional and medicinal values of edible wild and cultivated Pleurotus ostreatus. Turkish JAF Sci. Tech. 7, 2054 (2019). https://doi.org/10.24925/turjaf.v7i12.2054-2061.2730

    Article  Google Scholar 

  12. Ospina Álvarez, S.P., Ramírez Cadavid, D.A., Escobar Sierra, D.M., Ossa Orozco, C.P., Rojas Vahos, D.F., Zapata Ocampo, P., Atehortúa, L.: Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed. Res. Int. 2014, 1–7 (2014). https://doi.org/10.1155/2014/169071

    Article  Google Scholar 

  13. Liao, J., Huang, H.: Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures. Int. J. Biol. Macromol. 156, 1279–1286 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.165

    Article  Google Scholar 

  14. Yen, M.T., Mau, J.L.: Preparation of fungal chitin and chitosan from shiitake stipes. Fungal Sci. 21(1), 2 (2006). https://doi.org/10.7099/FS.200612.0001

    Article  Google Scholar 

  15. Zhou, S., Ma, F., Zhang, X., Zhang, J.: Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biol. 120, 852–861 (2016). https://doi.org/10.1016/j.funbio.2016.03.007

    Article  Google Scholar 

  16. Cherno, N., Osolina, S., Nikitina, A.: Chemical composition of agaricus bisporus and pleurotus ostreatus fruiting bodies and their morphological parts. Food Environ. Saf. J. 12(4) (2016). http://fia-old.usv.ro/fiajournal/index.php/FENS/article/view/180

  17. Baeva, E., Bleha, R., Lavrova, E., Sushytskyi, L., Čopíková, J., Jablonsky, I., Klouček, P., Synytsya, A.: Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: isolation and structural characterization. Molecules 24, 2740 (2019). https://doi.org/10.3390/molecules24152740

    Article  Google Scholar 

  18. Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., Kováříková, E., Čopíková, J.: Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohyd. Polym. 76, 548–556 (2009). https://doi.org/10.1016/j.carbpol.2008.11.021

    Article  Google Scholar 

  19. Sietsma, J.H., Wessels, J.G.H.: Solubility of (1–3)- -d/(1–6)- -D-Glucan in fungal walls: Importance of presumed linkage between glucan and chitin. Microbiology 125, 209–212 (1981). https://doi.org/10.1099/00221287-125-1-209

    Article  Google Scholar 

  20. Elsoud, M.M.A., El Kady, E.M.: Current trends in fungal biosynthesis of chitin and chitosan. Bull. Natl. Res. Centre 43(1), 59 (2019). https://doi.org/10.1186/s42269-019-0105-y

    Article  Google Scholar 

  21. Mol, P.C., Vermeulen, C.A., Wessels, J.G.H.: Glucan-glucosaminoglycan linkages in fungal walls. Acta Bot. Neerlandica. 37, 17–21 (1988). https://doi.org/10.1111/j.1438-8677.1988.tb01577.x

    Article  Google Scholar 

  22. Tolaimate, A., Rhazi, M., Alagui, A., Desbrieres, J., Rinaudo, M.: Valorization of waste products from fishing industry by production of the chitin and chitosan valorisation des dechets des industries de peche par production de la chitine et du chitosane. 9 (2008). https://hal.archives-ouvertes.fr/hal-00396614

  23. Bradstreet, R.B.: Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954). https://doi.org/10.1021/ac60085a028

    Article  Google Scholar 

  24. Manzi, P., Marconi, S., Aguzzi, A., Pizzoferrato, L.: Commercial mushrooms: nutritional quality and effect of cooking. Food Chem. 84, 201–206 (2004). https://doi.org/10.1016/S0308-8146(03)00202-4

    Article  Google Scholar 

  25. Braaksma, A., Schaap, D.J.: Protein analysis of the common mushroom Agaricus bisporus. Postharvest Biol. Technol. 7, 119–127 (1996). https://doi.org/10.1016/0925-5214(95)00034-8

    Article  Google Scholar 

  26. Bautista, J., Jover, M., Gutierrez, J.F., Corpas, R., Cremades, O., Fontiveros, E., Iglesias, F., Vega, J.: Preparation of crayfish chitin by in situ lactic acid production. Process Biochem. 37, 229–234 (2001). https://doi.org/10.1016/S0032-9592(01)00202-3

    Article  Google Scholar 

  27. Bianchi-Bosisio, A.: Proteins | Physiological samples. In: Encyclopedia of Analytical Science. p. 357–375. Elsevier (2005). https://doi.org/https://doi.org/10.1016/B0-12-369397-7/00494-5

  28. Speiser, D.I., DeMartini, D.G., Oakley, T.H.: The shell-eyes of the chiton Acanthopleura granulata (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. J. Nat. Hist. 48, 2899–2911 (2014). https://doi.org/10.1080/00222933.2014.959572

    Article  Google Scholar 

  29. Bonatti, M., Karnopp, P., Soares, H.M., Furlan, S.A.: Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem. 88, 425–428 (2004). https://doi.org/10.1016/j.foodchem.2004.01.050

    Article  Google Scholar 

  30. Bhatty, R.S., Sosulski, F.W., Wu, K.K.: Protein and nonprotein nitrogen contents of some oilseeds and peas. Can. J. Plant Sci. 53, 651–657 (1973). https://doi.org/10.4141/cjps73-129

    Article  Google Scholar 

  31. Beran, K., Holan, Z., Baldrián, J.: The chitin-glucan complex in Saccharomyces cerevisiae: I IR and X-ray observations. Folia Microbiol. 17, 322–330 (1972). https://doi.org/10.1007/BF02884098

    Article  Google Scholar 

  32. Kaya, M., Akata, I., Baran, T., Menteş, A.: Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophys. 10, 162–168 (2015). https://doi.org/10.1007/s11483-014-9378-8

    Article  Google Scholar 

  33. Ivshin, V.P., Artamonova, S.D., Ivshina, T.N., Sharnina, F.F.: Methods for isolation of chitin-glucan complexes from higher fungi native biomass. Polym. Sci. Ser. B. 49, 305–310 (2007). https://doi.org/10.1134/S1560090407110097

    Article  Google Scholar 

  34. Kaya, M., Halıcı, M.G., Duman, F., Erdoğan, S., Baran, T.: Characterisation of α-chitin extracted from a lichenised fungus species Xanthoria parietina. Nat. Prod. Res. 29, 1280–1284 (2015). https://doi.org/10.1080/14786419.2014.995651

    Article  Google Scholar 

  35. Vetter, J.: Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem. 102, 6–9 (2007). https://doi.org/10.1016/j.foodchem.2006.01.037

    Article  Google Scholar 

  36. Kaya, M., Baublys, V., Šatkauskienė, I., Akyuz, B., Bulut, E., Tubelytė, V.: First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. Int. J. Biol. Macromol. 79, 126–132 (2015). https://doi.org/10.1016/j.ijbiomac.2015.04.066

    Article  Google Scholar 

  37. Kaya, M., Seyyar, O., Baran, T., Erdoğan, S., Kar, M.: A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: with new surface morphology. Int. J. Biol. Macromol. 65, 553–558 (2014). https://doi.org/10.1016/j.ijbiomac.2014.02.010

    Article  Google Scholar 

  38. Yen, M.-T., Mau, J.-L.: Selected physical properties of chitin prepared from shiitake stipes. LWT Food Sci. Technol. 40, 558–563 (2007). https://doi.org/10.1016/j.lwt.2005.10.008

    Article  Google Scholar 

  39. Jones, M., Weiland, K., Kujundzic, M., Mautner, A., Bismarck, A., John, S.: Sustainable mycelium-derived chitinous thin films. Non-Serials, 4309–4317 (2019. https://search.informit.org/doi/https://doi.org/10.3316/informit.892879054072611

  40. Paulino, A.T., Simionato, J.I., Garcia, J.C., Nozaki, J.: Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr. Polym. 64, 98–103 (2006). https://doi.org/10.1016/j.carbpol.2005.10.032

    Article  Google Scholar 

  41. Kaya, M., Baran, T., Erdoğan, S., Menteş, A., Aşan Özüsağlam, M., Çakmak, Y.S.: Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng. C 45, 72–81 (2014). https://doi.org/10.1016/j.msec.2014.09.004

    Article  Google Scholar 

  42. Kaya, M., Erdogan, S., Mol, A., Baran, T.: Comparison of chitin structures isolated from seven Orthoptera species. Int. J. Biol. Macromol. 72, 797–805 (2015). https://doi.org/10.1016/j.ijbiomac.2014.09.034

    Article  Google Scholar 

  43. Sagheer, F.A.A., Al-Sughayer, M.A., Muslim, S., Elsabee, M.Z.: Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410–419 (2009). https://doi.org/10.1016/j.carbpol.2009.01.032

    Article  Google Scholar 

  44. Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., Tozak, K.O.: Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys. 9, 145–157 (2014). https://doi.org/10.1007/s11483-013-9327-y

    Article  Google Scholar 

  45. Erdogan, S., Kaya, M., Akata, I.: Chitin extraction and chitosan production from cell wall of two mushroom species (Lactarius vellereus and Phyllophora ribis). Introduced to proceedings of the 6th international advances in applied physics and materials science congress & exhibition: (apmas 2016), İstanbul, Turkey (2017). https://doi.org/https://doi.org/10.1063/1.4975427

  46. Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A.M., Baran, T., Amemiya, C.T., Galli, R., Akyuz, L., Sargin, I., Labidi, J.: On chemistry of γ-chitin. Carbohydr. Polym. 176, 177–186 (2017). https://doi.org/10.1016/j.carbpol.2017.08.076

    Article  Google Scholar 

  47. Yen, M.-T., Mau, J.-L.: Physico-chemical characterization of fungal chitosan from shiitake stipes. LWT Food Sci. Technol. 40, 472–479 (2007). https://doi.org/10.1016/j.lwt.2006.01.002

    Article  Google Scholar 

  48. Ifuku, S., Nomura, R., Morimoto, M., Saimoto, H.: Preparation of chitin nanofibers from mushrooms. Materials. 4, 1417–1425 (2011). https://doi.org/10.3390/ma4081417

    Article  Google Scholar 

  49. Nasrazadani, S., Hassani, S.: Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries. In: Makhlouf, A., Aliofkhazraei, M. (eds.), Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry. Elsevier, New York, pp. 39–54 (2016). https://doi.org/https://doi.org/10.1016/B978-0-08-100117-2.00010-8

  50. Wolfgong, W.J.: Chemical analysis techniques for failure analysis. In: Makhlouf, A., Aliofkhazraei, M. (eds.), Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries. Elsevier, New York, pp. 309–338 (2016). doi:https://doi.org/10.1016/B978-0-12-800950-5.00014-4

  51. Mehranian, M., Pourabad, R.F., Bashir, N.S., Taieban, S.: Physicochemical characterization of chitin from the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Macromol. Sci. Part A 54, 720–726 (2017). https://doi.org/10.1080/10601325.2017.1332461

    Article  Google Scholar 

  52. Ablouh, E.-H., Jalal, R., Rhazi, M., Taourirte, M.: Surface modification of α-chitin using an acidic treatment followed by ultrasonication: measurements of their sorption properties. Int. J. Biol. Macromol. 151, 492–498 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.204

    Article  Google Scholar 

  53. Knidri, E.L., Dahmani, J., Addaou, A., Laajeb, A., Lahsini, A.: Rapid and efficient extraction of chitin and chitosan for scale-up production: effect of process parameters on deacetylation degree and molecular weight. Int. J. Biol. Macromol. 139, 1092–1102 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.079

    Article  Google Scholar 

  54. El Knidri, H., El Khalfaouy, R., Laajeb, A., Addaou, A., Lahsini, A.: Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf. Environ. Prot. 104, 395–405 (2016). https://doi.org/10.1016/j.psep.2016.09.020

    Article  Google Scholar 

  55. Pestov, A.V., Drachuk, S.V., Koryakova, O.V., Yatluk, Y.G.: Isolation and characterization of chitin-glucan complexes from the mycothallus of fungi belonging to Russula genus. Chem. Sustain. Dev. 17, 281–287 (2009)

    Google Scholar 

  56. Draczynski, Z.: Honeybee corpses as an available source of chitin. J. Appl. Polym. Sci. 109, 1974–1981 (2008). https://doi.org/10.1002/app.28356

    Article  Google Scholar 

  57. Chaussard, G., Domard, A.: New aspects of the extraction of chitin from squid pens. Biomacromol 5, 559–564 (2004). https://doi.org/10.1021/bm034401t

    Article  Google Scholar 

  58. Focher, B., Naggi, A., Torri, G., Cosani, A., Terbojevich, M.: Structural differences between chitin polymorphs and their precipitates from solutions—evidence from CP-MAS 13C-NMR FT-IR and FT-Raman spectroscopy. Carbohydr. Polym. 17(2), 97–102 (1992). https://doi.org/10.1016/0144-8617(92)90101-U

    Article  Google Scholar 

  59. Di Mario, F., Rapanà, P., Tomati, U., Galli, E.: Chitin and chitosan from Basidiomycetes. Int. J. Biol. Macromol. 43, 8–12 (2008). https://doi.org/10.1016/j.ijbiomac.2007.10.005

    Article  Google Scholar 

  60. Wu, T., Zivanovic, S., Draughon, F.A., Sams, C.E.: Chitin and chitosan value-added products from mushroom waste. J. Agric. Food Chem. 52, 7905–7910 (2004). https://doi.org/10.1021/jf0492565

    Article  Google Scholar 

  61. Cárdenas, G., Cabrera, G., Taboada, E., Miranda, S.P.: Chitin characterization by SEM, FTIR, XRD, and 13 C cross polarization/mass angle spinning NMR: Chitin characterization. J. Appl. Polym. Sci. 93, 1876–1885 (2004). https://doi.org/10.1002/app.20647

    Article  Google Scholar 

  62. Mesa Ospina, N., Ospina Alvarez, S.P., Escobar Sierra, D.M., Rojas Vahos, D.F., Zapata Ocampo, P.A., Ossa Orozco, C.P.: Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. J. Mater. Sci. 26, 135 (2015). https://doi.org/10.1007/s10856-015-5461-z

    Article  Google Scholar 

  63. Synowiecki, J., Al-Khateeb, N.A.: Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 43, 145–171 (2003). https://doi.org/10.1080/10408690390826473

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge (la Direction Générale de la Recherche Scientifque et du Développement Technologique, Algerie) DGRSDT for their support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehya Boureghda.

Ethics declarations

Conflict of interest

Authors disclose that there are no financial and personal relationships with other parties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boureghda, Y., Satha, H. & Bendebane, F. Chitin–Glucan Complex from Pleurotus ostreatus Mushroom: Physicochemical Characterization and Comparison of Extraction Methods. Waste Biomass Valor 12, 6139–6153 (2021). https://doi.org/10.1007/s12649-021-01449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01449-3

Keywords

Navigation