Skip to main content
Log in

Glucoamylase Immobilization in Corncob Powder: Assessment of Enzymatic Hydrolysis of Starch in the Production of Glucose

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Amylases are environmentally attractive enzymes and are employed in food processing technology; for example, the starch hydrolysis process is used for glucose syrup production. The use of biocatalysts attached to a support promotes greater stabilization of the enzyme and allows its reuse, this being interesting for industrial applications. The choice of the support for enzyme immobilization must be made according to the process costs, therefore, the employment of agro-industrial byproducts is an alternative. We evaluated the immobilization of commercial glucoamylase in corncob powder (CCP) and the application of the immobilized enzyme (CCP-glucoamylase) in response to starch hydrolysis process

Results

The yield of glucoamylase immobilization in CCP was 95%. Soluble glucoamylase and CCP-glucoamylase presented maximum activity temperatures at 50 °C and 60 °C, respectively. Both biocatalysts showed a maximum activity at pH 5. Soluble glucoamylase and CCP-glucoamylase exhibited a good thermal stability at 50 °C, resulting in half-lives of 33 h and 46 h, respectively. Soluble glucoamylase and CCP-glucoamylase reached starch conversion into glucose of 75% and 16%, respectively, after 12 h of reaction, with an enzymatic load of 30 U per gram of starch. However, after an increase in the enzymatic load of CCP-glucoamylase, starch conversion was equivalent

Conclusion

CCP-glucoamylase has the potential to hydrolyze starch into glucose and can be reused, thus becoming an enhanced value-added bioproduct and an alternative for industrial applications. A strategy for future industrial application would be the hydrolysis of starch using CCP-glucoamylase in a fixed bed reactor operated continuously.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

We are providing a document with supplementary information.

Abbreviations

CCP:

Corn cob powder

CCP-glutaraldehyde:

Activated support

CCP-glucoamylase:

Immobilized glucoamylase

ATR-FTIR:

Attenuated Total Reflection-Fourier Transform Infrared

U:

International units

HPLC:

High-performance liquid chromatography system

DNS:

3,5-Dinitrosalicylic acid reagent

MOS:

Malto-oligossaccharides

M1 :

Glucose

M2 :

Maltose

M3 :

Maltotriose

M4 :

Maltotetraose

M5 :

Maltopentaose

M6 :

Maltohexaose

M7 :

Maltoheptaose

M8 :

Maltooctaose

Kd:

Enzyme deactivation

t½:

Half-life

Rp:

Yield by protein quantification

RA :

Yield per enzyme activity

E:

Immobilization efficiency

AR :

Recovered activity

Ae:

Enzymatic activity of immobilized glucoamylase

EDA:

Ethylenediamine

BSA:

Bovine serum albumin

SDS-PAGE:

Polyacrylamide gel electrophoresis with sodium dodecyl sulfate

References

  1. Abraham, M.: Encycloppedia of sustainable technologies. Elsevier, Amsterdam (2017)

    Google Scholar 

  2. Sumerly, R., Alvarez, H., Cereda, M.P., Vilpoux, O.: Tecnologias, usos e potencialidades de tuberosas amiláceas latino americanas. Fundação Cargill, São Paulo (2003)

    Google Scholar 

  3. Pasin, T.M., Benassi, V.M., Heinen, P.R., de Damasio, A.R., L., Cereia, M., Jorge, J.A., Polizeli, M. de L.T. de M. : Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus. Int. J. Biol. Macromol. 102, 779–788 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.016

    Article  Google Scholar 

  4. Guzmán-Maldonado, H., Paredes-López, O.: Amylolytic enzymes and products derived from starch: a review. Crit. Rev. Food Sci. Nutr. 35, 373–403 (1995). https://doi.org/10.1080/10408399509527706

    Article  Google Scholar 

  5. Kumar Singh, S., Khan, A., Nath Singh, R., Bahuguna, A., Chauhan, P., Kumar Sharma, V., Kaur, S.: Production, purification and characterization of thermostable α-amylase from soil isolate Bacillus sp. strain B-10. J. BioSci. Biotechnol. 5, 37–43 (2016). https://doi.org/10.1208/s12249-011-9586-1

    Article  Google Scholar 

  6. Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., Mohan, R.: Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135–152 (2000). https://doi.org/10.1042/ba19990073

    Article  Google Scholar 

  7. Almeida, P.Z., Messias, J.M., Pereira, M.G., Pinheiro, V.E., Maria, L., Monteiro, O., Ricardo, P., Cardoso, G.C., Jorge, J.A., Lourdes, M.D., Zaghetto, P., Messias, J.M., Pereira, M.G., Pinheiro, V.E., Maria, L., Monteiro, O., Heinen, P.R., Cunha, G.: Mixture design of starchy substrates hydrolysis by an immobilized glucoamylase from Aspergillus brasiliensis. Biocatal. Biotransformation. 36, 389–395 (2018). https://doi.org/10.1080/10242422.2017.1423059

    Article  Google Scholar 

  8. van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L.: Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94, 137–155 (2002). https://doi.org/10.1016/s0168-1656(01)00407-2

    Article  Google Scholar 

  9. Roy, I., Gupta, M.N.: Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme Microb. Technol. 34, 26–32 (2004). https://doi.org/10.1016/j.enzmictec.2003.07.001

    Article  Google Scholar 

  10. Chapman, J., Ismail, A.E., Dinu, C.Z.: Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts. 8, 20–29 (2018). https://doi.org/10.3390/catal8060238

    Article  Google Scholar 

  11. Hassan, M.E., Yang, Q., Xiao, Z., Liu, L., Wang, N., Cui, X., Yang, L.: Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech. 9, 1–16 (2019). https://doi.org/10.1007/s13205-019-1969-0

    Article  Google Scholar 

  12. Katchalski-Katzir, E.: Immobilized enzymes-learning from past successes and failures. Trends Biotechnol. 11, 471–478 (1993). https://doi.org/10.1016/0167-7799(93)90080-S

    Article  Google Scholar 

  13. Cao, L.: Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. (2005). https://doi.org/10.1016/j.cbpa.2005.02.014

    Article  Google Scholar 

  14. Hassan, M.E., Yang, Q., Xiao, Z.: Covalent immobilization of glucoamylase enzyme onto chemically activated surface of κ-carrageenan. Bull. Natl. Res. Cent. 43, 2–11 (2019). https://doi.org/10.1186/s42269-019-0148-0

    Article  Google Scholar 

  15. de Aguiar, R.O., Mondardo, R.M., Agnes, E.J., de Castro, H.F., Pereira, E.B.: Avaliação e comparação da eficiência de imobilização de lipase pancreática em quitosana para produção de ácidos graxos em frascos agitados. Acta Sci. Technol. 32, 15–19 (2010). https://doi.org/10.4025/actascitechnol.v32i1.7546

    Article  Google Scholar 

  16. Bassan, J., de Souza Bezerra, T., Peixoto, G., da Cruz, C., Galán, J., Vaz, A., Garrido, S., Filice, M., Monti, R.: Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein. Materials (Basel). 9, 357 (2016). https://doi.org/10.3390/ma9050357

    Article  Google Scholar 

  17. Dalla-Vecchia, R., Nascimento, M.D.G., Soldi, V.: Aplicações sintéticas de lipases imobilizadas em polímeros. Química Nova (2004). https://doi.org/10.1590/S0100-40422004000400017

    Article  Google Scholar 

  18. Bilal, M., Iqbal, H.M.N.: Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Res. Int. 123, 226–240 (2019). https://doi.org/10.1016/j.foodres.2019.04.066

    Article  Google Scholar 

  19. Bradford, M.M.: A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 254, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  20. de Almeida, P.Z., Pereira, M.G., de Carvalho, C.C., Heinen, P.R., Ziotti, L.S., Messias, J.M., Jorge, J.A., de Polizeli, M.: Bioprospection and characterization of the amylolytic activity by filamentous fungi from Brazilian Atlantic Forest. Biota Neotrop. 17, 2–9 (2017). https://doi.org/10.1590/1676-0611-bn-2017-0337

    Article  Google Scholar 

  21. Tavano, O.L., Pessela, B.C.C., Goulart, A.J., Fernández-Lafuente, R., Guisán, J.M., Monti, R.: Stabilization of an amylase from Neurospora crassa by Immobilization on Highly Activated Supports. Food Biotechnol. 22, 262–275 (2008). https://doi.org/10.1080/08905430802262616

    Article  Google Scholar 

  22. Miller, G.L.: Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  23. Sheldon, R.A., van Pelt, S.: Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 42, 6223–6235 (2013). https://doi.org/10.1039/c3cs60075k

    Article  Google Scholar 

  24. Laemmli, U.K.: Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  25. McIlvaine, T.C.: A BUFFER SOLUTION FOR COLORIMETRIC COMPARISON. J. Biol. Chem. (1921). https://doi.org/10.1016/S0021-9258(18)86000-8

    Article  Google Scholar 

  26. Oliveira, S.C., Paz-Cedeno, F.R., Masarin, F. (2017): Kinetic modeling of monomeric sugars formation during the enzymatic hydrolysis of the residue generated in the carrageenan production from algal biomass. In: XXI SINAFERM. , Aracaju

  27. Oliveira, S.C., Paz-Cedeno, F.R., Masarin, F.: Mathematical modeling of glucose accumulation during enzymatic hydrolysis of carrageenan waste. In: Silva Santos, A. (ed.) Avanços científicos e tecnológicos em bioprocessos, pp. 97–103. Brazil, Atena Editora (2018)

    Chapter  Google Scholar 

  28. Solorzano-Chavez, E.G., Paz-Cedeno, F.R., Ezequiel de Oliveira, L., Gelli, V.C., Monti, R., Conceição de Oliveira, S., Masarin, F.: Evaluation of the Kappaphycus alvarezii growth under different environmental conditions and efficiency of the enzymatic hydrolysis of the residue generated in the carrageenan processing. Biomass Bioenerg. (2019). https://doi.org/10.1016/j.biombioe.2019.105254

    Article  Google Scholar 

  29. Paz-Cedeno, F.R., Solórzano-Chávez, E.G., de Oliveira, L.E., Gelli, V.C., Monti, R., de Oliveira, S.C., Masarin, F.: Sequential Enzymatic and Mild-Acid Hydrolysis of By-Product of Carrageenan Process from Kappaphycus alvarezii. Bioenergy Res. (2019). https://doi.org/10.1007/s12155-019-09968-7

    Article  Google Scholar 

  30. Melo, E.P.: Estabilidade de proteínas. In: Cabral, J.M.S., Aires-barros, M.R., Gama, M. (eds.) Engenharia enzimática, pp. 67–120. Lidel, Lisbon (2003)

    Google Scholar 

  31. Xian, L., Feng, J.X.: Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99. Int J Biol Macromol. 107, 1122–1130 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.095

    Article  Google Scholar 

  32. Pavezzi, F.C.: Produção e caracterização de glucoamilases termoestáveis de Aspergillus awamori obtidas por PCR mutagênico e expressas em Saccharomyces cerevisiae. Universidade Estadual Paulista, Sao Paulo (2006)

    Google Scholar 

  33. Riaz, M., Rashid, M.H., Sawyer, L., Akhtar, S., Javed, M.R., Nadeem, H., Wear, M.: Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis. Food Chem. 130, 24–30 (2012). https://doi.org/10.1016/j.foodchem.2011.06.037

    Article  Google Scholar 

  34. Parashar, D., Satyanarayana, T.: Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int. J. Biol. Macromol. 99, 274–281 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.083

    Article  Google Scholar 

  35. Aalbæk, T., Reeslev, M., Jensen∗, B., Eriksen, S.H. : Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger. Enzyme Microb. Technol. 30, 410–415 (2002). https://doi.org/10.1016/S0141-0229(02)00006-6

    Article  Google Scholar 

  36. Santos, A. (2010): Imobilização de invertase comercial e de Saccharomyces cerevisiae em sabugo de milho e bagaço de cana-de-açúcar,

  37. Sheldon, R.A., van Pelt, S.: Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013). https://doi.org/10.1039/c3cs60075k

    Article  Google Scholar 

  38. Boudrant, J., Woodley, J.M., Fernandez-Lafuente, R.: Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 90, 66–80 (2020). https://doi.org/10.1016/j.procbio.2019.11.026

    Article  Google Scholar 

  39. Shetty, P., Jaffer, M.: Chemical coupling of glucoamylase produced by Arthrobotrys conoides onto cotton cloth and Ocimum basilicum seeds and characterization of the immobilized enzyme. J. Microbiol. Biotechnol. Food Sci. 6, 1127–1131 (2017). https://doi.org/10.15414/jmbfs.2017.6.5.1127-1131

    Article  Google Scholar 

  40. Roldán, I.U.M., Mitsuhara, A.T., Munhoz Desajacomo, J.P., de Oliveira, L.E., Gelli, V.C., Monti, R., Silva do Sacramento, L.V., Masarin, F. : Chemical, structural, and ultrastructural analysis of waste from the carrageenan and sugar-bioethanol processes for future bioenergy generation. Biomass Bioenerg. 107, 233–243 (2017). https://doi.org/10.1016/j.biombioe.2017.10.008

    Article  Google Scholar 

  41. Silverstain, R., Webster, F., Kiemle, D.: Identificação Espectrométrica de Compostos Orgánicos. LTC, Rio de Janeiro (2006)

    Google Scholar 

  42. Bagheri, A., Khodarahmi, R., Mostafaie, A.: Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: Relation to starch processing. Food Chem. 161, 270–278 (2014). https://doi.org/10.1016/j.foodchem.2014.03.095

    Article  Google Scholar 

  43. Syed, F., Ali, K., Javaid, M., Gul, M., Khan, Z., Imran, M., Taj, R., Ahmad, A.: Journal of Photochemistry & Photobiology, B : Biology Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila. JPB. 162, 309–317 (2016). https://doi.org/10.1016/j.jphotobiol.2016.07.002

    Article  Google Scholar 

  44. Cardoso, C.L., de Moraes e Queiza, M.C.: Imobilização de enzimas em suportes cromatográficos: uma ferramenta na busca por substâncias bioativas. Quim. Nova. 32, 175–187 (2009)

    Article  Google Scholar 

  45. Li, X.D., Wu, J., Jia, D.C., Wan, Y.H., Yang, N., Qiao, M.: Preparation of cross-linked glucoamylase aggregates immobilization by using dextrin and xanthan gum as protecting agents. Catalysts. (2016). https://doi.org/10.3390/catal6060077

    Article  Google Scholar 

  46. George, R., Gopinath, S., Sugunan, S.: Improved Stabilities of Immobilized Glucoamylase on Functionalized Mesoporous Silica Synthesised using Decane as Swelling Agent. Bull. Chem. React. Eng. & Catal. (2013). https://doi.org/10.9767/bcrec.8.1.4208.70-76.(2013)

    Article  Google Scholar 

  47. Nadar, S.S., Rathod, V.K.: Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability. Int. J. Biol. Macromol. 95, 511–519 (2017). https://doi.org/10.1016/j.ijbiomac.2016.11.084

    Article  Google Scholar 

  48. Costa, C.Z., Albuquerque, M.C.C., Brum, M.C., Castro, A.M.: Degradação microbiológica e enzimática de polímeros: uma revisão. Química Nova (2015). https://doi.org/10.5935/0100-4042.20140293

    Article  Google Scholar 

  49. Zhong, N., Chen, W., Liu, L., Chen, H.: Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: Their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chem. 271, 739–746 (2019)

    Article  Google Scholar 

  50. Agustian, J., Hermide, L.: Saccharification kinetics at optimised conditions of tapioca by glucoamylase immobilized on mesostructure cellular foam sílica. Eurasian Chem. J. (2018). https://doi.org/10.18321/ectj764

    Article  Google Scholar 

Download references

Acknowledgements

FAPESP (contract number 2018/06241-3) funding this work. Coordination of Improvement of Higher Education Personnel (CAPES) funding the doctoral scholarship of Fernando Roberto Paz-Cedeno and master scholarship of Isabela Costa Luchiari.

Funding

São Paulo State Research Support Foundation (FAPESP, contract number 2018/06241–3), funding this work. Coordination of Improvement of Higher Education Personnel (CAPES) funding the master Isabela da Costa Luchiari and doctoral scholarship of Fernando Roberto Paz-Cedeno.

Author information

Authors and Affiliations

Authors

Contributions

ICL, FRPC, TAMF and FPP immobilization and characterization of glucoamylase, evaluation of thermal and pH stability, enzymatic hydrolysis of starch, analyses of samples. ICL, FRPC, TAMF, FPP, AVP, RM and FM participated in the reviewed the manuscript and data interpretation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fernando Masarin.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Luchiari, I., Cedeno, F.R.P., de Macêdo Farias, T.A. et al. Glucoamylase Immobilization in Corncob Powder: Assessment of Enzymatic Hydrolysis of Starch in the Production of Glucose. Waste Biomass Valor 12, 5491–5504 (2021). https://doi.org/10.1007/s12649-021-01379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01379-0

Keywords

Navigation