Skip to main content

Advertisement

Log in

Effect of Batch Feeding Times on Greenhouse Gas and NH3 Emissions During Meat and Bone Meal Bioconversion by Black Soldier Fly Larvae

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Meat and bone meal (MBM) is considered an organic waste with abundant nutrient elements. There is an urgent demand for new technologies to recycle MBM. MBM treatment with black soldier fly larvae (BSFL) is of greater potential to obtain more available C and N than traditional methods. This study evaluated the effect of batch feeding times on MBM bioconversion by BSFL, and investigated the emission of greenhouse gases and NH3, the final distribution of C and N during this treatment. Our results showed that the lowest greenhouse gases and NH3 emission was observed in 1-time batch feeding treatment. The total greenhouse gases were increased with the increasing batch feeding times, the highest emission (484.13 g CO2-eq/kg DM) was obtained in the 5-time batch feeding treatment. The 5-time batch feeding treatment also achieved the highest substrate conversion efficiency (31.17%). Overall, using MBM as substrate for BSFL batch feeding is considered a very promising alternative.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. United Nations, D.O.E.A.S.A., Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables”. Working Paper No. ESA/P/WP/248 (2017).

  2. FAO. Food and Agriculture Organisation (FAO) Committee on Agriculture.: Managing Livestock—Environment Interactions. COAG 2007/4FAO, Rome (2007), p. 2007

  3. Asses, N., Farhat, W., Hamdi, M., Bouallagui, H.: Large scale composting of poultry slaughterhouse processing waste: microbial removal and agricultural biofertilizer application. Process Saf. Environ. Prot. 124, 128–136 (2019). https://doi.org/10.1016/j.psep.2019.02.004

    Article  Google Scholar 

  4. Bayr, S., Rantanen, M., Kaparaju, P., Rintala, J.: Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes. Bioresour. Technol. 104, 28–36 (2012). https://doi.org/10.1016/j.biortech.2011.09.104

    Article  Google Scholar 

  5. Jeng, A., Haraldsen, T.K., Vagstad, N., Gronlund, A.: Meat and bone meal as nitrogen fertilizer to cereals in Norway. Agric. Food Sci. 13(3), 268–275 (2004). https://doi.org/10.2137/1239099042643080

    Article  Google Scholar 

  6. Liu, X., Selonen, V., Steffen, K., Surakka, M., Rantalainen, A.-L., Romantschuk, M., Sinkkonen, A.: Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. Chemosphere 225, 574–578 (2019). https://doi.org/10.1016/j.chemosphere.2019.03.053

    Article  Google Scholar 

  7. Jing, Y.J., Hao, Y.J., Qu, H., Shan, Y., Li, D.S., Du, R.Q.: Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biol. Hung. 58(1), 75–86 (2007). https://doi.org/10.1556/ABiol.57.2007.1.7

    Article  Google Scholar 

  8. Park, S.I., Kim, J.W., Yoe, S.M.: Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol. 52(1), 98–106 (2015). https://doi.org/10.1016/j.dci.2015.04.018

    Article  Google Scholar 

  9. Maeda, K., Hanajima, D., Toyoda, S., Yoshida, N., Morioka, R., Osada, T.: Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol. 4(6), 700–709 (2011). https://doi.org/10.1111/j.1751-7915.2010.00236.x

    Article  Google Scholar 

  10. Barrington, S., Choiniere, D., Trigui, M., Knight, W.: Effect of carbon source on compost nitrogen and carbon losses. Bioresour. Technol. 83(3), 189–194 (2002). https://doi.org/10.1016/s0960-8524(01)00229-2

    Article  Google Scholar 

  11. Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., Savastano, D.: Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. J. Cleaner Prod. 140, 890–905 (2017). https://doi.org/10.1016/j.jclepro.2016.06.154

    Article  Google Scholar 

  12. IPCC.: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2013). https://doi.org/10.1017/CBO9781107415324

  13. Ermolaev, E., Lalander, C., Vinneras, B.: Greenhouse gas emissions from small-scale fly larvae composting with Hermetia illucens. Waste Manag. 96, 65–74 (2019). https://doi.org/10.1016/j.wasman.2019.07.011

    Article  Google Scholar 

  14. Chen, J., Hou, D., Pang, W., Nowar, E.E., Tomberlin, J.K., Hu, R., Li, Q.: Effect of moisture content on greenhouse gas and NH3 emissions from pig manure converted by black soldier fly. Sci. Total Environ. 697, 133840–133840 (2019). https://doi.org/10.1016/j.scitotenv.2019.133840

    Article  Google Scholar 

  15. Sripontan, Y., Chiu, C.I., Tanansathaporn, S., Leasen, K., Manlong, K.: Modeling the growth of black soldier fly Hermetia illucens (Diptera: Stratiomyidae): an approach to evaluate diet quality. J. Econ. Entomol (2019). https://doi.org/10.1093/jee/toz337

    Article  Google Scholar 

  16. Meneguz, M., Gasco, L., Tomberlin, J.K.: Impact of pH and feeding system on black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larval development. PLoS ONE. (2018). https://doi.org/10.1371/journal.pone.0202591

    Article  Google Scholar 

  17. Yang, F., Li, G., Shi, H., Wang, Y.: Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting. Waste Manag. 36, 70–76 (2015). https://doi.org/10.1016/j.wasman.2014.11.012

    Article  Google Scholar 

  18. Santos, A., Bustamante, M.A., Tortosa, G., Moral, R., Bernal, M.P.: Gaseous emissions and process development during composting of pig slurry: the influence of the proportion of cotton gin waste. J. Cleaner Prod. 112, 81–90 (2016). https://doi.org/10.1016/j.jclepro.2015.08.084

    Article  Google Scholar 

  19. Lv, B.Y., Zhang, D., Cui, Y.X., Yin, F.: Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol 268, 408–414 (2018). https://doi.org/10.1016/j.biortech.2018.08.004

    Article  Google Scholar 

  20. Nigussie, A., Kuyper, T.W., Bruun, S., de Neergaard, A.: Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Cleaner Prod. 139, 429–439 (2016). https://doi.org/10.1016/j.jclepro.2016.08.058

    Article  Google Scholar 

  21. Hao, X.Y., Chang, C., Larney, F.J.: Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting. J. Environ. Qual. 33(1), 37–44 (2004). https://doi.org/10.2134/jeq2004.0037

    Article  Google Scholar 

  22. Jiang, T., Li, G., Tang, Q., Ma, X., Wang, G., Schuchardt, F.: Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale. J. Environ. Sci. 31, 124–132 (2015). https://doi.org/10.1016/j.jes.2014.12.005

    Article  Google Scholar 

  23. de Guardia, A., Petiot, C., Rogeau, D., Druilhe, C.: Influence of aeration rate on nitrogen dynamics during composting. Waste Manag. 28(3), 575–587 (2008). https://doi.org/10.1016/j.wasman.2007.02.007

    Article  Google Scholar 

  24. Awasthi, M.K., Wang, Q., Ren, X., Zhao, J., Huang, H., Awasthi, S.K., Lahori, A.H., Li, R., Zhou, L., Zhan, Z.: gRole of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting Bioresour. Technol. 219, 270–280 (2016)

    Google Scholar 

  25. Perednia, D., Anderson, J., Rice, A.: A comparison of the greenhouse gas production of black soldier fly larvae versus aerobic microbial decomposition of an organic feed material Res. Rev. J. Ecol. Environ. Sci. 5 (2017)

Download references

Acknowledgement

This research was supported by the National Key Research and Development Program of China (Project No.2018YFD0500203), Fundamental Research Funds for the Central Universities (Project No.2662017JC045). Great gratitude goes to linguistics professor Ping Liu from Foreign Language College, Huazhong Agriculture University,Wuhan, China for her work at English editing and language polishing.Great gratitude goes to linguistics professor Ping Liu from Foreign Language College, Huazhong Agriculture University, Wuhan, China for her work at English editing and language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Z., Nowar, E.E. et al. Effect of Batch Feeding Times on Greenhouse Gas and NH3 Emissions During Meat and Bone Meal Bioconversion by Black Soldier Fly Larvae. Waste Biomass Valor 12, 3889–3897 (2021). https://doi.org/10.1007/s12649-020-01277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01277-x

Keywords

Navigation