Skip to main content
Log in

Products Distribution During Sewage Sludge Pyrolysis in a Sand and Olivine Fluidized Bed Reactor: Comparison with Woody Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The purpose of this article is to improve the understanding on sewage sludge (SS) pyrolysis behavior in a fluidized bed reactor between 700 and 890 °C. The experiments were carried out under a pure nitrogen atmosphere using sand and olivine as bed materials. The results gathered in this paper highlight the impact of temperature and bed materials on various performance criteria. It was observed that the use of olivine as a bed material affects the composition of the syngas, especially the fraction of the light hydrocarbons CH4 and C2HX. It was also noticed that increasing the pyrolysis temperature yielded more syngas and reduced the condensable species and char quantities. Furthermore, an increase in temperature led to an increase in the fraction of benzene in tars. Comparing different kinds of fuels revealed that SS pyrolysis yields less syngas than pinewood and more syngas than municipal green waste. SS pyrolysis led to significantly higher CH4 and C2HX yields than woody waste, as well as a higher tar quantity. It was also noticed that BTEX compounds account for 70% of the tars produced during the pyrolysis of each of the fuels that were studied at 850 °C. Findings show that the thermal decomposition of SS generates a syngas rich in H2 (25–37 mol%), CO (23–40%), CO2 (6–19%), CH4 (9–21%) and C2HX (4–17%). The syngas lower heating value is varying between 14,000 and 22,000 kJ/Nm3.

Graphic Abstract

Effect of temperature (700 and 850 °C) on sewage sludge (SS) pyrolysis products distribution in olivine fluidized bed reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

d:

Pellets diameter (cm)

d10, d50, d90 :

Fluidized media size distribution (µm)

d3/2 :

Sauter mean diameter of fluidized media (µm)

daf, B :

Dry ash free basis

\({\text{F}}_{{{\text{daf}},{\text{B}}}}\) :

Mass flow rate of the fuel (daf, B) (kg/h)

H2/CO:

Ratio between H2 and CO molar flow rates in the dry syngas (−)

L:

Wood pellets length (cm)

LHV:

Lower heating value of syngas (kJ/Nm3)

MB :

Molar mass of the waste (daf, B) (kg−1 mol)

Ni :

Molar flow rate of i constituent of syngas (mol/h)

P:

Pressure (mbar)

PG :

Syngas production yield (Nm3/kgdaf,B)

PGi :

Production yield of i component (Nm3/kgdaf,B)

T:

Bed temperature (°C)

U:

Gas velocity in the reactor (m/s)

Umf:

Minimum fluidization velocity (m/s)

\(\dot{V}_{G} \left( t \right)\) :

Volumetric flow rate of the incondensable gases (Nm3/h)

\(\dot{V}_{i} \left( t \right)\) :

Volume flow rate of different incondensable gaseous species (Nm3/h)

\(V_{m}\) :

Molar volume in temperature and pressure at normal conditions (Nm3/mol)

XcC :

Carbon conversion rate into char (−)

XcG :

Carbon conversion rate into non-condensable gases (−)

XcT :

Carbon conversion rate into tars (−)

Yi :

Molar percentage of i component in syngas (−)

ρs :

Skeletal density (kg/m3)

\(\aleph_{\text{i}}^{\text{C}}\) :

Number of carbon atoms in i component (−)

References

  1. Magdziarz, A., Werle, S.: Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 34, 174–179 (2014). https://doi.org/10.1016/j.wasman.2013.10.033

    Article  Google Scholar 

  2. Diblasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008). https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  3. Hofbauer, H., Rauch, R., Foscolo, P., Matera, D.: Hydrogen rich gas from biomass steam gasification. 3 (n.d.)

  4. Gomez-Barea, A., Nilsson, S., Vidal Barrero, F., Campoy, M.: Devolatilization of wood and wastes in fluidized bed. Fuel Process. Technol. 91, 1624–1633 (2010). https://doi.org/10.1016/j.fuproc.2010.06.011

    Article  Google Scholar 

  5. Fonts, I., Gea, G., Azuara, M., Ábrego, J., Arauzo, J.: Sewage sludge pyrolysis for liquid production: a review. Renew. Sustain. Energy Rev. 16, 2781–2805 (2012). https://doi.org/10.1016/j.rser.2012.02.070

    Article  Google Scholar 

  6. Patwardhan, P.R.: Understanding the product distribution from biomass fast pyrolysis. 162 (n.d.)

  7. Link, S., Arvelakis, S., Paist, A., Martin, A., Liliedahl, T., Sjöström, K.: Atmospheric fluidized bed gasification of untreated and leached olive residue, and co-gasification of olive residue, reed, pine pellets and Douglas fir wood chips. Appl. Energy 94, 89–97 (2012). https://doi.org/10.1016/j.apenergy.2012.01.045

    Article  Google Scholar 

  8. Morin, M., Nitsch, X., Pécate, S., Hémati, M.: Tar conversion over olivine and sand in a fluidized bed reactor using toluene as model compound. Fuel 209, 25–34 (2017). https://doi.org/10.1016/j.fuel.2017.07.084

    Article  Google Scholar 

  9. Evans, R.J., Milne, T.A.: Molecular characterization of the pyrolysis of biomass. Energy Fuels 1, 123–137 (1987). https://doi.org/10.1021/ef00002a001

    Article  Google Scholar 

  10. Déglise, X.: Les conversions thermochimiques du bois. Rev. For. Fr. (1982). https://doi.org/10.4267/2042/21577

    Article  Google Scholar 

  11. Shafizadeh, F., Furneaux, R.H., Cochran, T.G., Scholl, J.P., Sakai, Y.: Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J. Appl. Polym. Sci. 23, 3525–3539 (1979). https://doi.org/10.1002/app.1979.070231209

    Article  Google Scholar 

  12. Dufour, A.: Optimisation de la production d’hydrogène par conversion du méthane dans les procédés de pyrolyse/gazéification de la biomasse

  13. European Commision and the European Free Trade Association. Biomass gasification-tar and particles in products gases- sampling and analysis (2005)

  14. Cypres, R.: Aromatic hydrocarbons formation during coal pyrolysis. Fuel Process. Technol. 15, 1–15 (1987). https://doi.org/10.1016/0378-3820(87)90030-0

    Article  Google Scholar 

  15. Richter, H., Howard, J.: Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26, 565–608 (2000). https://doi.org/10.1016/S0360-1285(00)00009-5

    Article  Google Scholar 

  16. Mulholland, J.A., Lu, M., Kim, D.-H.: Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties. Proc. Combust. Inst. 28, 2593–2599 (2000). https://doi.org/10.1016/S0082-0784(00)80677-3

    Article  Google Scholar 

  17. Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Rirksomboon, T.: Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. J Anal Appl Pyrolysis 79, 78–85 (2007). https://doi.org/10.1016/j.jaap.2006.10.005

    Article  Google Scholar 

  18. Wei, L., Wen, L., Yang, T., Zhang, N.: Nitrogen transformation during sewage sludge pyrolysis. Energy Fuels 29, 5088–5094 (2015). https://doi.org/10.1021/acs.energyfuels.5b00792

    Article  Google Scholar 

  19. Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H.: Diesel fuel from thermal decomposition of soybean oil. J. Am. Oil Chem. Soc. 65, 1781–1786 (1988). https://doi.org/10.1007/BF02542382

    Article  Google Scholar 

  20. Orsini, S., Parlanti, F., Bonaduce, I.: Analytical pyrolysis of proteins in samples from artistic and archaeological objects. J Anal Appl Pyrolysis 124, 643–657 (2017). https://doi.org/10.1016/j.jaap.2016.12.017

    Article  Google Scholar 

  21. Zhang, Y., Kajitani, S., Ashizawa, M., Oki, Y.: Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace. Fuel 89, 302–309 (2010). https://doi.org/10.1016/j.fuel.2009.08.045

    Article  Google Scholar 

  22. Dufour, A., Girods, P., Masson, E., Rogaume, Y., Zoulalian, A.: Synthesis gas production by biomass pyrolysis: effect of reactor temperature on product distribution. Int J Hydrog Energy 34, 1726–1734 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.075

    Article  Google Scholar 

  23. Dufour, A., Masson, E., Girods, P., Rogaume, Y., Zoulalian, A.: Evolution of aromatic tar composition in relation to methane and ethylene from biomass pyrolysis-gasification. Energy Fuels 25, 4182–4189 (2011). https://doi.org/10.1021/ef200846g

    Article  Google Scholar 

  24. Shen, Y., Yoshikawa, K.: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21, 371–392 (2013). https://doi.org/10.1016/j.rser.2012.12.062

    Article  Google Scholar 

  25. Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew. Sustain. Energy Rev. 13, 594–604 (2009). https://doi.org/10.1016/j.rser.2008.01.009

    Article  Google Scholar 

  26. Fuentes-Cano, D., Gómez-Barea, A., Nilsson, S., Ollero, P.: The influence of temperature and steam on the yields of tar and light hydrocarbon compounds during devolatilization of dried sewage sludge in a fluidized bed. Fuel 108, 341–350 (2013). https://doi.org/10.1016/j.fuel.2013.01.022

    Article  Google Scholar 

  27. RapagnaÂ, S., Jand, N., Kiennemann, A., Foscolo, P.U.: Steam-gasiÿcation of biomass in a uidised-bed of olivine particles. Biomass Bioenergy 11 (2000)

  28. Abu El-Rub, Z., Bramer, E.A., Brem, G.: Review of catalysts for tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 43, 6911–6919 (2004). https://doi.org/10.1021/ie0498403

    Article  Google Scholar 

  29. Detournay M. Vapogazéification de la biomasse en Lit Fluidisé Circulant : Élaboration des outils théoriques et expérimentaux (2011)

  30. Abu El-Rub, Z., Bramer, E.A., Brem, G.: Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 87, 2243–2252 (2008). https://doi.org/10.1016/j.fuel.2008.01.004

    Article  Google Scholar 

  31. Fuentes-Cano, D., Gómez-Barea, A., Nilsson, S., Ollero, P.: Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chem. Eng. J. 228, 1223–1233 (2013). https://doi.org/10.1016/j.cej.2013.03.130

    Article  Google Scholar 

  32. Nitsch, X., Commandré, J.-M., Valette, J., Volle, G., Martin, E.: Conversion of phenol-based tars over biomass char under H2 and H2O atmospheres. Energy Fuels 28, 6936–6940 (2014). https://doi.org/10.1021/ef500980g

    Article  Google Scholar 

  33. Morin, M., Nitsch, X., Hémati, M.: Interactions between char and tar during the steam gasification in a fluidized bed reactor. Fuel 224, 600–609 (2018). https://doi.org/10.1016/j.fuel.2018.03.050

    Article  Google Scholar 

  34. Di Blasi, C., Signorelli, G., Di Russo, C., Rea, G.: Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 38, 2216–2224 (1999). https://doi.org/10.1021/ie980711u

    Article  Google Scholar 

  35. Pecate, S., Kessas, S.A., Morin, M., Hemati, M.: Beech wood gasification in a dense and fast internally circulating fluidized bed. Fuel 236, 554–573 (2019). https://doi.org/10.1016/j.fuel.2018.09.025

    Article  Google Scholar 

  36. Piskorz, J., Scott, D.S., Westerberg, I.B.: Flash pyrolysis of sewage sludge. Ind. Eng. Chem. Process. Des. Dev. 25, 265–270 (1986). https://doi.org/10.1021/i200032a042

    Article  Google Scholar 

  37. Stammbach, M.R., Kraaz, B., Hagenbucher, R., Richarz, W.: Pyrolysis of sewage sludge in a fluidized bed. Energy Fuels 3, 255–259 (1989). https://doi.org/10.1021/ef00014a022

    Article  Google Scholar 

  38. Kaminsky, W., Kummer, A.B.: Fluidized bed pyrolysis of digested sewage sludge. J. Anal. Appl. Pyrolysis 16, 27–35 (1989). https://doi.org/10.1016/0165-2370(89)80033-6

    Article  Google Scholar 

  39. Fonts, I., Juan, A., Gea, G., Murillo, M.B., Sánchez, J.L.: Sewage sludge pyrolysis in fluidized bed, 1: influence of operational conditions on the product distribution. Ind. Eng. Chem. Res. 47, 5376–5385 (2008). https://doi.org/10.1021/ie7017788

    Article  Google Scholar 

  40. Park, E.-S., Kang, B.-S., Kim, J.-S.: Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy Fuels 22, 1335–1340 (2008). https://doi.org/10.1021/ef700586d

    Article  Google Scholar 

  41. Fonts, I., Azuara, M., Lázaro, L., Gea, G., Murillo, M.B.: Gas chromatography study of sewage sludge pyrolysis liquids obtained at different operational conditions in a fluidized bed. Ind. Eng. Chem. Res. 48, 5907–5915 (2009). https://doi.org/10.1021/ie900421a

    Article  Google Scholar 

  42. Fonts, I., Azuara, M., Gea, G., Murillo, M.B.: Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis 85, 184–191 (2009). https://doi.org/10.1016/j.jaap.2008.11.003

    Article  Google Scholar 

  43. Park, H.J., Heo, H.S., Park, Y.-K., Yim, J.-H., Jeon, J.-K., Park, J., et al.: Clean bio-oil production from fast pyrolysis of sewage sludge: effects of reaction conditions and metal oxide catalysts. Bioresour. Technol. 101, S83–S85 (2010). https://doi.org/10.1016/j.biortech.2009.06.103

    Article  Google Scholar 

  44. Nipattummakul, N., Ahmed, I.I., Kerdsuwan, S., Gupta, A.K.: Hydrogen and syngas production from sewage sludge via steam gasification. Int J Hydrog Energy 35, 11738–11745 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.032

    Article  Google Scholar 

  45. Jaramillo-Arango, A., Fonts, I., Chejne, F., Arauzo, J.: Product compositions from sewage sludge pyrolysis in a fluidized bed and correlations with temperature. J. Anal. Appl. Pyrolysis 121, 287–296 (2016). https://doi.org/10.1016/j.jaap.2016.08.008

    Article  Google Scholar 

  46. Anca-Couce, A.: Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 53, 41–79 (2016). https://doi.org/10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  47. Kessas, S.A. Etude expérimentale de pyrolyse et de vapogazéification des boues de STEP en réacteurs à lit fluidisé entre 700 et 900 °C : comparaison avec les déchets boisés (2019)

Download references

Acknowledgements

The authors thank “L’Agence de l’Environnement et de la Maîtrise de l’Energie (Ademe)” for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sid Ahmed Kessas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix 1

See Table 8.

Table 8 Fluidized media properties

Appendix 2

Inert nitrogen was chosen as the reference gas (tracer) for the analysis. It is introduced into the reactor with a known flow rate.

The gasification reactor performance is characterized by:

  • The composition of the incondensable gas (syngas) yi, determined by micro-GC,

  • The volumetric flow rate of the incondensable gases, considered at normal conditions, leaving the reactor, \(\dot{V}_{G} \left( t \right)\).

  • Knowing the nitrogen flow rate introduced into the reactor \(\dot{V}_{N2}\) and its molar (volume) fraction \(y_{N2} \left( t \right)\) determined by the chromatographic analysis, we can calculate this quantity:

$$\dot{V}_{G} \left( t \right) = \frac{{\dot{V}_{N2} }}{{(1 - y_{N2} \left( t \right))}}$$
(1)
  • The volume flow rate of different incondensable gaseous species. It is calculated by:

$$\dot{V}_{i} \left( t \right) = y_{i} \left( t \right) \cdot \dot{V}_{G} \left( t \right)$$
(2)

where \({\dot{\text{V}}}_{\text{G}} \left( {\text{t}} \right)\) and \({\text{y}}_{\text{i}} \left( {\text{t}} \right)\) are the volume flow rate of syngas and the molar fraction of the compound in syngas (excluding N2), respectively.

  • The production yield of each incondensable gaseous compound, PGi, defined as the volume of each gaseous constituent (considered at normal conditions) produced per kg of dry and ash free fuel (daf, B):

$${\text{P}}_{\text{Gi}} = \frac{{{\dot{\text{V}}}_{\text{i}} \left( t \right)}}{{{\text{F}}_{{{\text{daf}},{\text{B}}}} }}$$
(3)

where PGi is production yield of i component (Nm3/kg daf,B), \({\dot{\text{V}}}_{\text{i}} \left( {\text{t}} \right)\) is the flow rate of noncondensable gas (Nm3/h) and \({\text{F}}_{{{\text{daf}},{\text{B}}}}\) is the mass flow rate of the fuel (daf, B) (kg/h);

  • The production yield of syngas, PG, is defined as the syngas volume produced per kg of fuel daf, B:

$${\text{P}}_{\text{G}} = \frac{{\mathop \sum \nolimits_{\text{i}} {\dot{\text{V}}}_{\text{i}} \left( t \right)}}{{{\text{F}}_{{{\text{daf}},{\text{B}}}} }}$$
(4)

with PG the syngas production yield (Nm3/kgdaf,B), \({\dot{\text{V}}}_{\text{i}} \left( t \right)\) the volume flow rate of the incondensable gases (Nm3/h) and \({\text{F}}_{{{\text{daf}},{\text{B}}}}\) the mass flow rate of the fuel daf, B (kg/h)

In order to quantify the carbon distribution into different phases, we have defined the following quantities:

  • The carbon conversion rate into non-condensable gases, \({\text{X}}_{\text{cG}}\), in steady state is defined as the ratio between the carbon moles amount in the gaseous products and the carbon number of moles contained in the fuel:

$${\text{X}}_{\text{cG}} = \frac{{\mathop \sum \nolimits_{\text{i}} ({\text{N}}_{\text{i}} \cdot \aleph_{\text{i}}^{\text{C}} )}}{{{\raise0.7ex\hbox{${{\text{F}}_{{{\text{daf}},{\text{B}}}} }$} \!\mathord{\left/ {\vphantom {{{\text{F}}_{{{\text{daf}},{\text{B}}}} } {{\text{M}}_{\text{B}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${{\text{M}}_{\text{B}} }$}}}}$$
(5)
  • Ni is the molar flow rate of i constituent of syngas: \(N_{i} = \frac{{{\dot{\text{V}}}_{\text{i}} \left( t \right) }}{{V_{m} }}\) and \({\dot{\text{V}}}_{\text{i}} \left( t \right)\) is the volume flow rate of incondensable gases (Nm3/h) and \(V_{m}\) is the molar volume in temperature and pressure at normal conditions (= 0.0224 Nm3/mol).

  • \(\aleph_{\text{i}}^{\text{C}}\) is the number of carbon atoms in i component (i = CO, CO2, CH4, C2H2, C2H4 and C2H6) and MB is the molar mass of the waste (daf, B) (kg/mol).

  • The carbon conversion rate into char \({\text{X}}_{\text{cC}}\), defined as the ratio between the number of moles of carbon in the solid residue (char) and the number of moles of carbon introduced as fuel. The char production yield obtained during the pyrolysis of fuels was determined by combustion after each experiment. One the fuel feeding is interrupted, the fluidizing gas is switched to air, and the evolution of the fumes composition versus time is recorded (CO, CO2, N2, O2). By integration,, we first calculate the number of moles of carbon remaining in the fluidized bed, we can then estimate the conversion rate of carbon into char:

$${\text{X}}_{\text{cC}} = \frac{{\mathop \smallint \nolimits_{0}^{t} \mathop \sum \nolimits_{\text{i}} ({\text{N}}_{\text{i}} \cdot \aleph_{\text{i}}^{\text{C}} ){\text{dt}}}}{{{\raise0.7ex\hbox{${{\text{F}}_{{{\text{daf}},{\text{B}}}} }$} \!\mathord{\left/ {\vphantom {{{\text{F}}_{{{\text{daf}},{\text{B}}}} } {{\text{M}}_{\text{B}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${{\text{M}}_{\text{B}} }$}}}}$$
(6)

From these results and by knowing the chemical formula of char, we calculate the mass of char produced (not converted) per kg of dry ash free fuel.

  • The carbon conversion rate into tars, \({\text{X}}_{\text{cT}}\), defined as the ratio between the number of moles of carbon in the tars and the number of carbon introduced in the reactor as fuel. It is estimated by difference:

$${\text{X}}_{\text{cT}} = 1 - {\text{X}}_{\text{cG}} - {\text{X}}_{\text{cC}}$$
(7)
  • The mass production yield of the pyrolysis products expressed in g/kg of fuel daf, B is calculated as follows: \({\text{P}}_{\text{Gi}} *\frac{{M_{i} }}{{V_{m} }}\) where \({\text{P}}_{\text{Gi}}\) is the production yield of i constituent (Nm3/kg daf,B), \(M_{i}\) is the molar mass of the i constituent and \(V_{m}\) is the molar volume (= 0,0224 Nm3/mol).

  • The low heating value is expressed as follows:

$$LHV = \sum LHV_{i} \cdot y_{i}^{syngas}$$
(8)

\(LHV_{i}\) represents the low heating value of i constituent in the syngas, and \(y_{i}^{syngas}\) is its molar fraction in steady state.

  • The production yield of tars and pyrolytic water, expressed in g/kgdaf,B, were determined as follows:

For a controlled flow rate and sampling time (1 h), the mass variation of the isopropanol solution (used in the tar protocol) is measured. This mass variation corresponds to the quantity of pyrolytic liquid (water and tars) captured. Knowing the flow rate of the incondensable gas, measured using a rotameter placed at the outlet of the vacuum pump, and the sampling time, we can calculate the production yield of the pyrolytic liquid in g/Nm3 of dry gas. The dry gas included nitrogen (tracer) and the syngas.

By measuring the mass fraction of the water in the sample (isopropanol + pyrolytic liquid), by Karl Fischer analysis, we can then calculate the water and tars contents in g/Nm3 of dry gas.

The measurement of the volume fraction of nitrogen in the dry gas allows us to express these condensable species quantities in g/Nm3 of dry syngas. Furthermore, they can also be represented in g/kg of fuel daf, B by multiplying by the value of syngas production yield (Nm3/kgdaf,B). Note that the water amount measured included the water produced by pyrolysis (pyrolytic water) and that introduced by the moisture in the fuel. By subtracting the fuel moisture, we can get the real value of the pyrolytic water yield.

Appendix 3

See Figs. 19 and 20.

Fig. 19
figure 19

Evolution of H2, CO and CO2 molar percentages in syngas versus the temperature during the pyrolysis of sewage sludge (Figure on the right: sand; figure on the left: olivine)

Fig. 20
figure 20

Evolution of CH4 and C2HX molar percentages in syngas versus the temperature during the pyrolysis of sewage sludge (Figure on the right: sand; figure on the left: olivine)

Appendix 4

See Table 9.

Table 9 Influence of temperature and fuel nature on tars production yields (SS700, SS850, GW850, PIN850)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessas, S.A., Esteves, T. & Hemati, M. Products Distribution During Sewage Sludge Pyrolysis in a Sand and Olivine Fluidized Bed Reactor: Comparison with Woody Waste. Waste Biomass Valor 12, 3459–3484 (2021). https://doi.org/10.1007/s12649-020-01209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01209-9

Keywords

Navigation