Skip to main content
Log in

The Investigation of Phosphogypsum Specimens Processed by Press-Forming Method

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Phosphogypsum (further PG) is a by-product obtained from the production process of the phosphate fertilisers. It is produced in enormous quantities, but only 15% of it is recycled. The remaining part is stored in large stockpiles or in water bodies. The harmful water–soluble impurities present in PG composition cause serious ecological complications; therefore, in order to solve this problem, it is crucial to find a useful and large—scale application. In this study, the suitability of the press-formed PG to be used as a binding material is investigated. Three important aspects are considered: the neutralisation of impurities, the degree of hydration and the compressive strength. The addition of the hydrated lime additive in the PG mixture was found to be an effective way to bind the water-soluble harmful phosphates into non-soluble compounds, solving the environmental problem which could limit its application. Moreover, “two-step hydration process” was proven to be a useful way to achieve a higher degree of hydration of the hardened PG specimens. Finally, the press-forming process was found to be an economic way to improve the compressive strength of PG specimens and, therefore, a good alternative to the usage of more expensive additives such as cement. The optimal combination of the compressive strength and the degree of hydration was achieved. In conclusion, the application of press-formed PG in building materials is an economic and efficient way to solve the environmental problems which it is causing today.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Radiation Protection and Management of NORM Residues in the Phosphate Industry, Safety Reports Series No. 78. International Atomic Energy Agency (IAEA), Vienna (2013)

  2. Macías, F., Pérez-López, R., Cánovas, C.R., Carrero, S., Cruz-Hernandez, P.: Environmental assessment and management of phosphogypsum according to European and United States of America Regulations. Procedia Earth Planet. Sci. (2017). https://doi.org/10.1016/j.proeps.2016.12.178

    Article  Google Scholar 

  3. Rashad, A.M.: Phosphogypsum as a construction material. J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.08.049

    Article  Google Scholar 

  4. Papastefanou, C., Stoulos, S., Ioannidou, A., Manolopoulou, M.: The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact. (2006). https://doi.org/10.1016/j.jenvrad.2006.05.005

    Article  Google Scholar 

  5. Abril, J., García-Tenorio, R., Enamorado, S.M., Hurtado, M.D., Andreu, L., Delgado, A.: The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U and Cd contents in soils and tomato fruit. Sci. Total Environ. (2008). https://doi.org/10.1016/j.scitotenv.2008.05.013

    Article  Google Scholar 

  6. Alcordo, I.S., Rechcigl, J.E.: Phosphogypsum in agriculture: a review. Adv. Agron. (1993). https://doi.org/10.1016/S0065-2113(08)60793-2

    Article  Google Scholar 

  7. Sarkka, A.: Kemira—disposal management system for utilization of industrial phosphogypsum and fly ash. Life environment in action 56: new success stories for Europe´s environment, pp. 98–99. Office for Official Publications of the European Communities, Luxembourg (2001)

    Google Scholar 

  8. Chang, W.F., Chin, D.A., Ho, R.: Phosphogypsum for secondary road construction. Florida Institute of Phosphate Research, Bartow, Florida (1989)

    Google Scholar 

  9. Degirmenci, N., Okucu, A., Turabi, A.: Application of phosphogypsum in soil stabilization. Build. Environ. (2007). https://doi.org/10.1016/j.buildenv.2006.08.010

    Article  Google Scholar 

  10. Folek, S., Walawska, B., Wilczek, B., Miskiewicz, J.: Use of phosphogypsum in road construction. Pol. J. Chem. Technol. 13, 18 (2011)

    Article  Google Scholar 

  11. Değirmenci, N.: Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Constr. Build. Mater. (2008). https://doi.org/10.1016/j.conbuildmat.2007.04.024

    Article  Google Scholar 

  12. Kumar, S.: Fly ash–lime–phosphogypsum hollow blocks for walls and partitions. Build. Environ. (2003). https://doi.org/10.1016/S0360-1323(02)00068-9

    Article  Google Scholar 

  13. Kuryatnyk, T., Angulski da Luz, C., Ambroise, J., Pera, J.: Valorization of phosphogypsum as hydraulic binder. J Hazard Mater (2008). https://doi.org/10.1016/j.jhazmat.2008.03.014

    Article  Google Scholar 

  14. Zhou, J., Yu, D., Shu, Z., Li, T., Chen, Y., Wang, Y.: A novel two-step hydration process of preparing cement-free non-fired bricks from waste phosphogypsum. Constr. Build. Mater. (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.075

    Article  Google Scholar 

  15. Bandgar, G.S., Kumthekar, M.B., Landage, A.B.: A review of effective utilization of waste phosphogypsum as a building material. Int. J. Eng. Res. 5, 277–280 (2016)

    Google Scholar 

  16. Tayibi, H., Choura, M., López, F.A., Alguacil, F.J., López-Delgado, A.: Environmental impact and management of phosphogypsum. J. Environ. Manag. (2009). https://doi.org/10.1016/j.jenvman.2009.03.007

    Article  Google Scholar 

  17. Singh, M.: Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cem. Concr. Res. (2003). https://doi.org/10.1016/S0008-8846(03)00068-1

    Article  Google Scholar 

  18. Valančius, Z., Nizevičienė, D., Leskevičienė, V., Kybartienė, N.: Influence of the technological parameters on the structure and properties of hemi-hydrate phosphogypsum. Ceram. Silik. 49, 120–125 (2004)

    Google Scholar 

  19. Nizevičienė, D., Vaičiukynienė, D., Vaitkevičius, V., Rudžionis, Ž.: Effects of waste fluid catalytic cracking on the properties of semi-hydrate phosphogypsum. J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2016.07.037

    Article  Google Scholar 

  20. Kaziliunas, A., Leskeviciene, V., Vektaris, B., Valancius, Z.: The study of neutralization of the dihydrate phosphogypsum impurities. Ceram. Silik. 50, 178 (2006)

    Google Scholar 

  21. Singh, M.: Treating waste phosphogypsum for cement and plaster manufacture. Cem. Concr. Res. (2002). https://doi.org/10.1016/S0008-8846(02)00723-8

    Article  Google Scholar 

  22. Nizevičienė, D., Vaičiukynienė, D., Michalik, B., Bonczyk, M., Vaitkevičius, V., Jusas, V.: The treatment of phosphogypsum with zeolite to use it in binding material. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.208

    Article  Google Scholar 

  23. Dueñas, C., Fernández, M.C., Cañete, S., Pérez, M.: Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat. Meas. (2010). https://doi.org/10.1016/j.radmeas.2010.01.007

    Article  Google Scholar 

  24. Campos, M.P., Costa, L.J.P., Nisti, M.B., Mazzilli, B.P.: Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate. J. Environ. Radioact. (2017). https://doi.org/10.1016/j.jenvrad.2017.04.002

    Article  Google Scholar 

  25. Kanno, W.M., Rossetto, H.L., de Souza, M.F., Máduar, M.F., de Campos, M.P., Mazzilli, B.P.: High strength phosphogypsum and its use as a building material. AIP Conf. Proc. 1034, 307–310 (2008)

    Article  Google Scholar 

  26. Yang, J., Liu, W., Zhang, L., Xiao, B.: Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr. Build. Mater. (2009). https://doi.org/10.1016/j.conbuildmat.2008.02.011

    Article  Google Scholar 

  27. Zieliński, M.: Influence of constant magnetic field on the properties of waste phosphogypsum and fly ash composites. Constr. Build. Mater. (2015). https://doi.org/10.1016/j.conbuildmat.2015.04.029

    Article  Google Scholar 

  28. Zhou, J., Gao, H., Shu, Z., Wang, Y., Yan, C.: Utilization of waste phosphogypsum to prepare non-fired bricks by a novel Hydration-Recrystallization process. Constr. Build. Mater. (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.045

    Article  Google Scholar 

  29. Zhou, J., Sheng, Z., Li, T., Shu, Z., Chen, Y., Wang, Y.: Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.01.117

    Article  Google Scholar 

  30. Hitachi Scanning Electron Microscope S3400N. High-Tech Instruments. https://htiweb.com/Products/Advanced%20Microscopy/EM/SEM/SEMS3400N.html (2018). Accessed Jan 28 2020

  31. PDF-2: Powder Diffraction File. International Centre for Diffraction Data (ICDD). https://www.icdd.com/pdf-2/ (2019). Accessed Feb 24 2020

  32. Larson, A., Dreele, R.: General Structure Analysis System (GSAS). Report LAUR, 86–748 (2004)

  33. AD8000 Professional Multi-Parameter pH-ORP-Conductivity-TDS-TEMP Bench Meter. Adwa Instruments Inc. https://www.adwainstruments.com/bench-meters/95-professional-multi-parameter-ph-orp-ec-tds-temp-bench-meter/33-ad8000 (2016). Accessed Jan 28 2020

  34. HI 713 Phosphate Low Range. Hanna Instruments. https://hannainst.com.au/downloads/dl/file/id/1053/ist713_03_13.pdf (2017). Accessed Jan 28 2020

  35. Compressive Strength Testing Machines. Toni Technic. https://tonitechnik.com/en/products/machines/compressive-strength-testing-machines/ (2019). Accessed Jan 28 2020

  36. Vaičiukynienė, D., Nizevičienė, D., Šeduikytė, L. (eds.): Sustainable approach of the utilization of production waste: the use of phosphogypsum and AlF3 production waste in building materials. Politechnika Krakowska, Krakow (2017)

    Google Scholar 

  37. European Commission: Report from the Commission in accordance with Article 3.7 of the Groundwater Directive 2006/118/EC on the establishment of groundwater threshold values (2010)

  38. Kybartiene, N., Leskeviciene, V., Nizeviciene, D., Valancius, Z.: The investigation of the hydratation of semi-hydrate phosphogypsum by thermal analysis methods. Mater. Sci. 10, 259–263 (2004)

    Google Scholar 

  39. Leškevičienė, V., Valančius, Z., Nizevičienė, D., Bončkus, A.: Gipsinės rišamosios medžiagos gavimo būdas (eng. Method of obatining gypsum based binding material), Lithuanian patent. Patent ID: LT-4699, Lithuania (2000)

  40. EN 13279–2:2014: Gypsum binders and gypsum plasters—Part 2: Test methods. (2014)

  41. Nilles, V., Plank, J.: Study of the retarding mechanism of linear sodium polyphosphates on α-calcium sulfate hemihydrate. Cem. Concr. Res. (2012). https://doi.org/10.1016/j.cemconres.2012.02.008

    Article  Google Scholar 

  42. Taylor, R.: Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 6, 35–39 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IVF coordinated the project participating in all the experiments, analysing obtained results and redacting the manuscript. VD came up with the idea of the study and assisted in press-forming processes and compressive strength tests. DV and DN performed and assisted in chemical composition experiments (loss on ignition, XRD analysis, soluble phosphate quantity, pH measurement, SEM–EDS analysis). All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ignacio Villalón Fornés.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalón Fornés, I., Doroševas, V., Vaičiukynienė, D. et al. The Investigation of Phosphogypsum Specimens Processed by Press-Forming Method. Waste Biomass Valor 12, 1539–1551 (2021). https://doi.org/10.1007/s12649-020-01067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01067-5

Keywords

Navigation