Skip to main content

Advertisement

Log in

Complementarity of Substrates in Anaerobic Digestion of Wastewater Grown Algal Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of this study was to apply the concept of substrate complementarity. Algal biomass cultivated in effluent (domestic or from the brewing industry) in combination with olive mill wastewater was anaerobically digested, without any pre-treatment or correction of the substrate, allowing stability of the process and improvement of the digestion unit performance. For biomass produced in domestic sewage, the substitution of 10% of its volume by olive mill wastewater resulted in a better performance, with a yield of 0.10 m3 CH4 kg−1 volatile solids and an increase of 61% in methane production, when compared to the yield from the digestion of only algal biomass. Concerning algal biomass produced in domestic sewage, among others, the high content of ash (40%) and the low content of carbohydrates (3.6%) were the main factors to be overcome with the addition of complementary substrate. Regarding the algal biomass produced in brewing effluent, proportions of up to 20% of olive mill wastewater could be used without inhibiting anaerobic activity, however, a period of adaptation of the inoculum should be considered. Due to its more balanced chemical composition, biomass from the brewing industry alone presented better yield in methane production; 0.16 m3 CH4 kg−1 volatile solids, 14% higher than when digested together with 10% of the volume of olive mill wastewater substrate. The best performance of anaerobic digestion of algal biomass with another substrate was not related to the carbon–nitrogen ratio used. Therefore, other characteristics have influenced the algal biomass anaerobic process, such as the chemical constitution of algal biomass, mostly associated with the type of medium where it was cultivated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sittijunda, S., Reungsang, A.: Methane production from the co-digestion of algal biomass with crude glycerol by anaerobic mixed cultures. Waste Biomass Valoriz (2018). https://doi.org/10.1007/s12649-018-0542-0

    Article  Google Scholar 

  2. Dar, R.A., Urmila, P., Phutela, G.: Enzymatic and hydrothermal pretreatment of newly isolated Spirulina subsalsa BGLR6 biomass for enhanced biogas production. Waste Biomass Valoriz 1, 3 (2019). https://doi.org/10.1007/s12649-019-00712-y

    Article  Google Scholar 

  3. Sialve, B., Bernet, N., Bernard, O.: Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27, 409–416 (2009). https://doi.org/10.1016/j.biotechadv.2009.03.001

    Article  Google Scholar 

  4. Speece, R.E.: Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville (1996)

    Google Scholar 

  5. González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 110, 610–616 (2012). https://doi.org/10.1016/j.biortech.2012.01.043

    Article  Google Scholar 

  6. Zamalloa, C., Boon, N., Verstraete, W.: Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy 92, 733–738 (2012). https://doi.org/10.1016/j.apenergy.2011.08.017

    Article  Google Scholar 

  7. Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150, 51–56 (2010). https://doi.org/10.1016/j.jbiotec.2010.07.030

    Article  Google Scholar 

  8. Brown, M.R., Jeffrey, S.W., Volkman, J.K., Dunstan, G.A.: Nutritional properties of microaglae for mariculture. Aquaculture 151, 315–331 (1997). https://doi.org/10.1016/s0044-8486(96)01501-3

    Article  Google Scholar 

  9. Geider, R.J., Roche, J.La: Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Br. Phycol. Soc. 37, 1–17 (2002). https://doi.org/10.1017/S0967026201003456

    Article  Google Scholar 

  10. Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S.S., McCauley, E., Schulz, K.L., Siemann, E.H., Sterner, R.W.: Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578–580 (2000). https://doi.org/10.1038/35046058

    Article  Google Scholar 

  11. Sosnowski, P., Wieczorek, A., Ledakowicz, S.: Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv. Environ. Res. 7, 609–616 (2003). https://doi.org/10.1016/s1093-0191(02)00049-7

    Article  Google Scholar 

  12. Marques, I.P.: Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233–239 (2001). https://doi.org/10.1016/s0011-9164(01)00224-7

    Article  Google Scholar 

  13. Sampaio, M.A.P., Gonçalves, M.R., Marques, I.P.: Anaerobic digestion challenge of raw olive mill wastewater. Bioresour. Technol. 102, 1684–1692 (2011). https://doi.org/10.1016/s0011-9164(01)00224-7

    Article  Google Scholar 

  14. Morvová, M., Onderka, M., Morvová, M., Morva, I., Chudoba, V.: Pyrolysis of olive mill waste with on-line and ex-post analysis. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-017-0126-4

    Article  Google Scholar 

  15. International Olive Oil Council: World Olive Oil Production. International Olive Oil Council, Madrid (2018)

    Google Scholar 

  16. Sousa, D.A., Costa, A., Aleandre, M.R., Prata, J.V.: Carbon nanodots from olive mill wastewater: a sustainable route. In: I Reunião do Grupo do Carbono, p. 31. Sociedade Portuguesa de Química, Porto (2017)

  17. Gonçalves, M.R., Freitas, P., Marques, I.P.: Bioenergy recovery from olive mill effluent in a hybrid reactor. Biomass Bioenergy 39, 253–260 (2012). https://doi.org/10.1016/j.biombioe.2012.01.014

    Article  Google Scholar 

  18. Azbar, N., Bayram, A., Filibeli, A., Muezzinoglu, A., Sengul, F., Ozer, A.: A review of waste management options in olive oil production. Crit. Rev. Environ. Sci. Technol. 34, 209–247 (2004). https://doi.org/10.1080/10643380490279932

    Article  Google Scholar 

  19. APHA: Standard Methods for Examination of Water and Wastewater. APHA, Washington, DC (2012)

    Google Scholar 

  20. Singleton, V.L., Rossi, J.A.: American Journal of Enology and Viticulture. American Society of Enologists, Davis (1965)

    Google Scholar 

  21. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  22. AOAC: Association of Official Analytical Chemists: Official Methods of Analysis. AOAC, Washington, DC (2000)

    Google Scholar 

  23. Raposo, F., Fernández-Cegrí, V., De la Rubia, M.A., Borja, R., Béline, F., Cavinato, C., Demirer, G., Fernández, B., Fernández-Polanco, M., Frigon, J.C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I., de Wilde, V.: Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86, 1088–1098 (2011). https://doi.org/10.1002/jctb.2622

    Article  Google Scholar 

  24. Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015). https://doi.org/10.1016/j.btre.2014.10.005

    Article  Google Scholar 

  25. Ryan, D., Antolovich, M., Prenzler, P., Robards, K., Lavee, S.: Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic. (Amsterdam) 92, 147–176 (2002). https://doi.org/10.1016/s0304-4238(01)00287-4

    Article  Google Scholar 

  26. Dai, J., Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010). https://doi.org/10.3390/molecules15107313

    Article  Google Scholar 

  27. Erwin, J.: Comparative biochemistry of fatty acids in eukaryotic microorganisms. In: Erwin, J.A. (ed.) Lipids and Biomembranes of Eukaryotic Microorganisms, pp. 141–143. Academic Press, New York (1973)

    Google Scholar 

  28. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621–639 (2008). https://doi.org/10.1111/j.1365-313x.2008.03492.x

    Article  Google Scholar 

  29. Passos, F., Astals, S., Ferrer, I.: Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag. 34, 2098–2103 (2014). https://doi.org/10.1016/j.wasman.2014.06.004

    Article  Google Scholar 

  30. Van Den Hende, S., Laurent, C., Bégué, M.: Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery. Bioresour. Technol. 196, 184–193 (2015). https://doi.org/10.1016/j.biortech.2015.07.058

    Article  Google Scholar 

  31. Olsson, J., Feng, X.M., Ascue, J., Gentili, F.G., Shabiimam, M.A., Nehrenheim, E., Thorin, E.: Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresour. Technol. 171, 203–210 (2014). https://doi.org/10.1016/j.biortech.2014.08.069

    Article  Google Scholar 

  32. Gonçalves, M.R., Costa, J.C., Marques, I.P., Alves, M.M.: Inoculum acclimation to oleate promotes the conversion of olive mill wastewater to methane. Energy 36, 2138–2141 (2011). https://doi.org/10.1016/j.energy.2010.04.042

    Article  Google Scholar 

  33. Sampaio, M.A., Gonçalves, M.R., Marques, I.P.: Anaerobic digestion challenge of raw olive mill wastewater. Bioresour. Technol. 102, 10810–10818 (2011). https://doi.org/10.1016/j.biortech.2011.09.001

    Article  Google Scholar 

  34. Yen, H.W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98, 130–134 (2007). https://doi.org/10.1016/j.biortech.2005.11.010

    Article  Google Scholar 

  35. Ehimen, E.A., Sun, Z.F., Carrington, C.G., Birch, E.J., Eaton-Rye, J.J.: Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl. Energy 88, 3454–3463 (2011). https://doi.org/10.1016/j.apenergy.2010.10.020

    Article  Google Scholar 

  36. Wang, M., Sahu, A.K., Rusten, B., Park, C.: Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresour. Technol. 142, 585–590 (2013). https://doi.org/10.1016/j.biortech.2013.05.096

    Article  Google Scholar 

  37. Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., Lu, H., Dong, T.: Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: nutrients reuse and biogas enhancement. Waste Manag. 70, 247–254 (2017). https://doi.org/10.1016/j.wasman.2017.09.016

    Article  Google Scholar 

  38. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). https://doi.org/10.1016/j.wasman.2011.03.021

    Article  Google Scholar 

  39. Zhong, W., Zhang, Z., Luo, Y., Qiao, W., Xiao, M., Zhang, M.: Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour. Technol. 114, 281–286 (2012). https://doi.org/10.1016/j.biortech.2012.02.111

    Article  Google Scholar 

  40. Herrmann, C., Kalita, N., Wall, D., Xia, A., Murphy, J.D.: Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresour. Technol. 214, 328–337 (2016). https://doi.org/10.1016/j.biortech.2016.04.119

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sociedade Central Cervejas e Bebidas (SCC), Portugal, to the access of brewery effluent and anaerobic inoculum. Paula Assemany appreciates her sandwich Ph.D. scholarship (CNPq 234510/2014-5) funded by the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Assemany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assemany, P., de Paula Marques, I., Calijuri, M.L. et al. Complementarity of Substrates in Anaerobic Digestion of Wastewater Grown Algal Biomass. Waste Biomass Valor 11, 5759–5770 (2020). https://doi.org/10.1007/s12649-019-00875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00875-8

Keywords

Navigation