Skip to main content

Advertisement

Log in

Bio-hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-continuous Reactor Operation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The high volumes of sewage sludge produced have raised interests for simultaneous treatment and clean energy production, e.g. in the form of hydrogen. Pretreatment of sewage sludge is required to enhance microbial degradation and in turn hydrogen yield from sewage sludge. The potential of five substrate pretreatments, individually and in combinations, to increase biohydrogen production from mixed primary and secondary sewage sludge at four incubation pH (5, 7, 9, and 11) was studied in batch assays. Alkali + ultrasonication pretreatment increased the hydrogen production almost seven times (0.35 mmol H2/g VS) compared to untreated sewage sludge at initial pH 11. In general, higher hydrogen yields and lower acetate concentrations were obtained under alkaline conditions (pH 9 and 11), being more favorable for protein degradation and not favorable for hydrogen consumption via homoacetogenesis. Subsequently, fermentation of alkali + ultrasonication pretreated sewage sludge in a semi-continuous stirred tank reactor (CSTR) produced a maximum hydrogen yield of 0.1 mmol H2/g VS, three times higher than the yield obtained from alkali pretreated sludge. The gas produced in the CSTRs contained a low concentration of CO2 (< 5%), and is thus easily upgradable to biohydrogen.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kangas, A.: Sewage sludge treatment and utilization in Finland (2017)

  2. Wang, C.C., Chang, C.W., Chu, C.P., Lee, D.J., Chang, B.V., Liao, C.S., Tay, J.H.: Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res. 37, 2789–2793 (2003)

    Article  Google Scholar 

  3. Hosseini, S.E., Wahid, M.A.: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016)

    Article  Google Scholar 

  4. Xiao, B., Liu, J.: Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard. Mater. 168, 163–167 (2009)

    Article  Google Scholar 

  5. Guo, L., Lu, M., Li, Q., Zhang, J., She, Z.: A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis. Int. J. Hydrog. Energy 40, 197–208 (2015)

    Article  Google Scholar 

  6. Zhang, M.L., Fan, Y.T., Xing, Y., Pan, C.M., Zhang, G.S., Lay, J.J.: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31, 250–254 (2007)

    Article  Google Scholar 

  7. Shin, H.S., Youn, J.H.: Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16, 33–44 (2005)

    Article  Google Scholar 

  8. Zheng, H.S., Guo, W.Q., Yang, S.S., Feng, X.C., Du, J.S., Zhou, X.J., Chang, J.S., Ren, N.Q.: Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: analysis of the advantages of microbial community and metabolism. Bioresour. Technol. 172, 433–437 (2014)

    Article  Google Scholar 

  9. Bougrier, C., Carrère, H., Delgenès, J.P.: Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169 (2005)

    Article  Google Scholar 

  10. Weemaes, M.P.J., Verstraete, W.H.: Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 73, 83–92 (1998)

    Article  Google Scholar 

  11. Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G.: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025–2029 (2006)

    Article  Google Scholar 

  12. Yin, Y., Wang, J.: Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production. Radiat. Phys. Chem. 121, 110–114 (2016)

    Article  Google Scholar 

  13. Assawamongkholsiri, T., Reungsang, A., Pattra, S.: Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. Int. J. Hydrog. Energy 38, 6146–6153 (2013)

    Article  Google Scholar 

  14. Bundhoo, M.A.Z., Mohee, R., Hassan, M.A.: Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J. Environ. Manag. 157, 20–48 (2015)

    Article  Google Scholar 

  15. Xiao, B., Liu, J.: Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 54, 2038–2044 (2009)

    Google Scholar 

  16. Cai, M., Liu, J., Wei, Y.: Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ. Sci. Technol. 38, 3195–3202 (2004)

    Article  Google Scholar 

  17. Zhao, Y., Chen, Y., Zhang, D., Zhu, X.: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. Environ. Sci. Technol. 44, 3317–3323 (2010)

    Article  Google Scholar 

  18. Kavitha, S., Yukesh Kannah, R., Yeom, I.T., Do, K.U., Banu, J.R.: Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour. Technol. 197, 383–392 (2015)

    Article  Google Scholar 

  19. Kim, D.H., Jeong, E., Oh, S.E., Shin, H.S.: Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 44, 3093–3100 (2010)

    Article  Google Scholar 

  20. Yang, S.S., Guo, W.Q., Cao, G.L., Zheng, H.S., Ren, N.Q.: Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour. Technol. 124, 347–354 (2012)

    Article  Google Scholar 

  21. Wan, J., Jing, Y., Zhang, S., Angelidaki, I., Luo, G.: Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: focusing on homoacetogenesis. Water Res. 102, 524–532 (2016)

    Article  Google Scholar 

  22. Fang, H.H.P., Liu, H.: Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93 (2002)

    Article  Google Scholar 

  23. Penniston, J., Gueguim Kana, E.B.: Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol. Biotechnol. Equip. 32, 204–212 (2018)

    Article  Google Scholar 

  24. Thonart, P., Hamilton, C., Calusinska, M., Wilmotte, A., Hiligsmann, S., Joris, B., Masset, J.: Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol. Biofuels 5, 35 (2012)

    Article  Google Scholar 

  25. Chenlin, L., Herbert, F.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39 (2007)

    Article  Google Scholar 

  26. Gorlenko, V., Tsapin, A., Namsaraev, Z., Teal, T., Tourova, T., Engler, D., Mielke, R., Nealson, K.: Anaerobranca californiensis sp. nov., an anaerobic alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int. J. Syst. Evol. Microbiol. 54, 739–743 (2004)

    Article  Google Scholar 

  27. Alibardi, L., Cossu, R.: Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 47, 69–77 (2016)

    Article  Google Scholar 

  28. Koskinen, P.E.P., Lay, C.H., Puhakka, J.A., Lin, P.J., Wu, S.Y., Örlygsson, J., Lin, C.Y.: High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an icelandic hot spring. Biotechnol. Bioeng. 101, 665–678 (2008)

    Article  Google Scholar 

  29. Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979)

    Article  Google Scholar 

  30. Nissilä, M.E., Tähti, H.P., Rintala, J.A., Puhakka, J.A.: Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresour. Technol. 102, 4501–4506 (2011)

    Article  Google Scholar 

  31. Logan, B.E., Oh, S.E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)

    Article  Google Scholar 

  32. Dessì, P., Lakaniemi, A.M., Lens, P.N.L.: Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 & °C. Water Res. 115, 120–129 (2017)

    Article  Google Scholar 

  33. APHA/AWWA/WEF: Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington (2012)

    Google Scholar 

  34. Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for experimenters: an introduction to design, data analysis, and model building, 1st edn, p. 653. Wiley, New York (1978)

    MATH  Google Scholar 

  35. Guo, L., Li, X.M., Bo, X., Yang, Q., Zeng, G.M., Liao, D.X., Liu, J.J.: Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour. Technol. 99, 3651–3658 (2008)

    Article  Google Scholar 

  36. Tanaka, S., Kamiyama, K.: Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Sci. Technol. 46, 173–179 (2002)

    Article  Google Scholar 

  37. Lin, C.Y., Hung, C.H., Chen, C.H., Chung, W.T., Cheng, L.H.: Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochem. 41, 1383–1390 (2006)

    Article  Google Scholar 

  38. Saady, N.M.C.: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int. J. Hydrog. Energy 38, 13172–13191 (2013)

    Article  Google Scholar 

  39. Luo, G., Karakashev, D., Xie, L., Zhou, Q., Angelidaki, I.: Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol. Bioeng. 108, 1816–1827 (2011)

    Article  Google Scholar 

  40. Bundhoo, M.A.Z., Mohee, R.: Inhibition of dark fermentative bio-hydrogen production: a review. Int. J. Hydrog. Energy 41, 6713–6733 (2016)

    Article  Google Scholar 

  41. Lay, J., Lee, Y., Noike, T.: Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 33, 2579–2586 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support received from the Finnish National Agency for Education (Finnish Government Scholarship Pool) and Ministry of Higher Education and Scientific Research of Egypt (MOHESR) is duly acknowledged. The authors gratefully thank the Viinikanlahti municipal wastewater treatment plant (Tampere, Finland) for providing the raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Qelish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Qelish, M., Chatterjee, P., Dessì, P. et al. Bio-hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-continuous Reactor Operation. Waste Biomass Valor 11, 4225–4234 (2020). https://doi.org/10.1007/s12649-019-00743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00743-5

Keywords

Navigation