Skip to main content

Advertisement

Log in

Evaluation of Changes in Tree Morphology Parameters, Biomass Yield, Chemical and Energy Properties at Three Spacings of Short Rotation Energy Plantations of Gmelina arborea in Costa Rica, from 1 to 2 Years of Age

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Propose

Tree diameter and height, yield and chemical and energy properties increment throughout two different ages (1- and 2-year-old) were evaluated in Gmelina arborea trees growing in short rotation woody crops at three sites and three spacings (0.5 × 1.0, 1.0 × 1.0 and 2.0 × 1.0 m).

Results

The results showed great variation in parameters evaluated in relation to site, whereas for spacing the results were regular. Diameter, height and biomass yield increased in 2-year-old trees at all sites and spacings. The higher increments were observed in the 0.5 × 1.0 m spacing at sites 2 and 3. Biomass distribution in the different parts of 2-year-old trees showed increased biomass in the trunk and branches, and reduced biomass in leaves. The study of biomass properties showed increments in the specific gravity and reductions in the moisture content (MC) of trunk and branches, but MC of bark was regular. The increment in specific gravity and volatile contents was highest in the 0.5 × 1.0 m spacing, while MC of trunk, branches and bark, heat calorific value and ash content decreased. Carbon and nitrogen contents were irregular throughout spacing and sites.

Conclusions

It was determined that at 2 years of age, Sites 1 and 2 presented normal behavior of Gmelina arborea in SRWC conditions, and in the Site 3 the changes produced improved the quality of biomass for energy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stoeglehner, G., Narodoslawsky, M., Erker, S., Neugebauer, G.: System interrelations between spatial structures, energy demand, and energy supply. In: Integrated Spatial and Energy Planning, pp. 11–34. Springer International Publishing, New York (2016)

    Chapter  Google Scholar 

  2. Inglesi-Lotz, R.: The impact of renewable energy consumption to economic growth: a panel data application. Energy Econ. 53, 58–63 (2016)

    Article  Google Scholar 

  3. Hussien, M.E., Siwar, C., Alam, R.Z., Jafar, A.H., Ludin, N.A.: Green economy and renewable energy focusing on the biomass energy source. J. Sustainable Dev. 9(3), 56–61 (2016)

    Article  Google Scholar 

  4. Hauk, S., Knoke, T., Wittkopf, S.: Economic evaluation of short rotation coppice systems for energy from biomass—A review. Renew. Sust. Energy Rev. 29, 435–448 (2014)

    Article  Google Scholar 

  5. Djomo, S.N., El Kasmioui, O., De Groote, T., Broeckx, L.S., Verlinden, M.S., Berhongaray, G., Fichot, R., Zona, D., Dillen, S.Y., King, J.S., Janssens, I.A., Ceulemans, R: Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a 2-year rotation. Appl. Energy. 111, 862–870 (2013)

    Article  Google Scholar 

  6. Tenorio, C., Moya, R., Tomazello-Filho, M., Valaert, J.: Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. BioResourses 10, 482–498 (2015)

    Google Scholar 

  7. Vassilev, S.V., Vassileva, C.G., Vassilev, V.S.: Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel. 158, 330–350 (2015)

    Article  Google Scholar 

  8. Liberloo, M., Luyssaert, S., Bellassen, V., Djomo, S.N., Lukac, N., Calfapietra, C., Janssens, I.A., Hoosbeek, M.R., Viovy, N.C., Churkina, G., Scarascia-Mugnozza, G., Ceulemans, R.: Bio-energy retains its mitigation potential under elevated CO2. PloS ONE 5(7), 1–7 (2010)

    Article  Google Scholar 

  9. FAO El Estado de los bosques del mundo 2014. Potenciar los beneficios socioeconómicos de los bosques. Roma (2014)

  10. FAO El Estado de los bosques del mundo 2016. Los bosques y la agricultura: desafíos y oportunidades en relación con el uso de la tierra. Roma (2016)

  11. Djomo, S.N., Ac, A., Zenone, T., De Groote, T., Bergante, S., Facciotto, G., Sixto, H., Ciria Ciria, R., Wegerg, J., Ceulemans, J.R.: Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renew. Sust. Energy. Rev. 41, 845–854 (2015)

    Article  Google Scholar 

  12. Evans, A., Strezov, V., Evans, T.J.: Sustainability considerations for electricity generation from biomass. Renew. Sust. Energy Rev. 14, 1419–1427(2010)

    Article  Google Scholar 

  13. Liu, Y., Xu, Y., Zhang, F., Yun, J., Shen, Z.: The impact of biofuel plantation on biodiversity: a review. Chin. Sci. Bull. 59(34), 4639–4651 (2014)

    Article  Google Scholar 

  14. Scarlat, N., Dallemand, J.F., Monforti-Ferrario, F., Medarac, H., Banja, M., Bódis, K.: Bioenergy monitoring and mapping in the European Union. In: Bioenergy and Latin America: a multi-Country perspective, 163. European Union, Luxemburg (2015)

    Google Scholar 

  15. Schulze, J., Frank, K., Priess, J.A., Meyer, M.A.: Assessing regional-scale impacts of short rotation coppices on ecosystem services by modeling land-use decisions. PloS One. 11(4), e0153862 (2016)

    Article  Google Scholar 

  16. Matzenberger, J., Kranzl, L., Tromborg, E., Junginger, M., Daioglou, V., Goh, C.S., Keramidas, K..: Future perspectives of international bioenergy trade. Renew. Sust. Energy. Rev. 43, 926–941 (2015)

    Article  Google Scholar 

  17. Morales, M., Aroca, G., Rubilar, R., Acuna, E., Mola-Yudego, B., González-García, S.: Cradle-to-gate life cycle assessment of Eucalyptus globulus short rotation plantations in Chile. J. Cleaner Prod. 99, 239–249 (2015)

    Article  Google Scholar 

  18. Carmona, R., Nuñez, T., Alonso, M.F.: Biomass yield and quality of an energy dedicated crop of poplar (Populus spp.) clones in the Mediterranean zone of Chile. Biomass Bioener. 74, 96–102 (2015)

    Article  Google Scholar 

  19. Lemos, S.V., Sartori, M.P., Junior, E., Ribas, L.C., Guerra, S.P.: Energy generation of short rotation eucalyptus. Energia na Agricultura 30(3), 263–268 (2015)

    Article  Google Scholar 

  20. Junior, H.J.E., de Melo, R.X., Sartori, M.M.P., Guerra, P.S., Ballarin, A.W.: Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioener. 90, 15–21 (2016)

    Article  Google Scholar 

  21. Cutz, L., Haro, P., Santana, D., Johnsson, F.: Assessment of biomass energy sources and technologies: the case of Central America. Renew. Sust. Energy Rev. 58, 1411–1431 (2016)

    Article  Google Scholar 

  22. Tenorio, C., Moya, R., Arias-Aguilar, D., Briceño-Elizondo, E.: Biomass yield and energy potential of short-rotation energy plantations of Gmelina arborea one year old in Costa Rica. Ind. Crops. Prod. 83, 63–73 (2016)

    Article  Google Scholar 

  23. Salazar-Zeledón, E., Moya, R., Valaert, J.: Biomass and bioenergy production of Arundo donax L., Pennisetum purpureum Schum. and Pennisetum purpureum Schumack. × Pennisetum glaucum L. in short rotation cropping system in Costa Rica. J. Biobased Mater. Bioenerg. 9, 572–579 (2015)

    Article  Google Scholar 

  24. Tuskan, G.A.: Short-rotation woody crop supply systems in the United States: what do we know and What do we need to know? Biomass Bioener. 14(4), 307–315 (1998)

    Article  Google Scholar 

  25. Le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R.A., Hakamada, R.: Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sens. Environ. 152, 136–149 (2014)

    Article  Google Scholar 

  26. Baettig, R., Yáñez, M., Albornoz, M.: Short rotation woody crops of hybrid poplars for bioenergy in Chile: state of the art. Bosque 31(2), 89–99 (2010)

    Article  Google Scholar 

  27. Pleguezuelo, C.R., Zuazo, V.H., Bielders, C., Bocanegra, J.A., Perea-Torres, F., Martínez, J.R.: Bioenergy farming using woody crops. A review. Agron. Sustain. Dev. 35, 95–119 (2015)

    Article  Google Scholar 

  28. Zamora, D.S., Apostol, K.G., Berguson, W.E., Volk, T.A., Wright, J., Ogdahl, E.J.: Short rotation woody crops biomass production. In: Biomass and biofuels: advanced biorefineries for sustainable production and distribution, pp. 49–76. Taylor & Francis Group, Florida (2015)

    Google Scholar 

  29. El Kasmioui, O., Ceulemans, R.: Financial analysis of the cultivation of short rotation woody crops for bioenergy in Belgium: barriers and opportunities. BioEnergy Res. 6, 336–350 (2013)

    Article  Google Scholar 

  30. Eisenbies, M.H., Volk, T.A., Posselius, J., Foster, C., Shi, S., Karapetyan, S.: Evaluation of a single-pass, cut and chip harvest system on commercial-scale, short-rotation shrub willow biomass crops. BioEnergy Res. 7, 506–1518 (2014)

    Article  Google Scholar 

  31. Vanbeveren, S.P., Schweier, J., Berhongaray, G., Ceulemans, R.: Operational short rotation woody crop plantations: Manual or mechanised harvesting? Biomasss Bioener. 72, 8–18 (2015)

    Article  Google Scholar 

  32. Dvorak, W.S.: World view of Gmelina arborea opportunities and challenges. New For. 28, 111–126 (2004)

    Article  Google Scholar 

  33. Moya, R.: Wood of Gmelina arborea in Costa Rica. New For. 28, 299–317 (2004)

    Article  Google Scholar 

  34. Hall, R.B.: Use of the crown competition factor concept to select clones and spacings for short-rotation woody crops. Tree Physiol. 14, 899–909 (2014)

    Article  Google Scholar 

  35. Adegbidi, H.G., Volk, T.A., White, E.H., Abrahamson, L.P., Briggs, R.D., Bickelhaupt, D.H.: Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioener. 20, 399–411 (2001)

    Article  Google Scholar 

  36. Mead, D.J. Opportunities for improving plantation productivity. How much? How quickly? How realistic? Biomass Bioener. 28(2), 249–266 (2005)

    Article  Google Scholar 

  37. Toillon, J., Dallé, E., Bodineau, G., Berthelot, A., Bastien, J.C., Brignolas, F., Marron, N.: Plasticity of yield and nitrogen removal in 56 Populus deltoides × P. nigra genotypes over two rotations of short-rotation coppice. For. Ecol. Manag. 375, 55–65 (2016)

    Article  Google Scholar 

  38. ASTM D4442-07: Standard test methods for direct moisture content measurement of wood and wood-base materials. ASTM International, West Conshohocken, PA. http://www.astm.org (2007)

  39. ASTM D5865-04: Standard test method for gross calorific value of coal and coke. ASTM International, West Conshohocken, PA. http://www.astm.org (2004)

  40. ASTM D1102-84.: Standard test method for ash in wood. ASTM International, West Conshohocken, PA. http://www.astm.org (2013)

  41. ASTM D1762-84.: Standard test method for chemical analysis of wood charcoal. ASTM International, West Conshohocken, PA. http://www.astm.org (2013)

  42. Benomar, L., DesRochers, A., Larocque, G.R.: The effects of spacing on growth, morphology and biomass production and allocation in two hybrid poplar clones growing in the boreal region of Canada. Trees-Struct Funct. 26(3), 939–949 (2012)

    Article  Google Scholar 

  43. Verlinden, M.S., Broeckx, L.S., Van den Bulcke, J., Van Acker, J., Ceulemans, R.: Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short-rotation culture. For. Ecol. Manag. 307, 101–111 (2013)

    Article  Google Scholar 

  44. Guo, T., Engel, B.A., Shao, G., Arnold, J.G., Srinivasan, R., Kiniry, J.R. Functional approach to simulating short-rotation woody crops in process-based models. BioEnergy. 8(4), 1598–1613 (2015)

    Article  Google Scholar 

  45. Brodie, L.S., Debell, D.S.: Evaluation of field performance of poplar clones using selected competition indices. New For. 27(3), 201–214 (2004)

    Article  Google Scholar 

  46. Kerr, G.: Effects of spacing on the early growth of planted Fraxinus excelsior L. Can. J. For. Res. 33, 1196–1207 (2003)

    Article  Google Scholar 

  47. Lanner, R.M.: On the insensitivity of height growth to spacing. For. Ecol. Manag. 13(3–4), 143–148 (1985)

    Article  Google Scholar 

  48. Pinkard, E.A., Neilsen, W.A.: Crown and stand characteristics of Eucalyptus nitens in response to initial spacing: implications for thinning. For. Ecol. Manag. 172(2–3), 215–227 (2003)

    Article  Google Scholar 

  49. Chotchutima, S., Kangvansaichol, K., Tudsri, S., Sripichitt, P.: Effect of spacing on growth, biomass yield and quality of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for renewable energy in Thailand. J. Sust. Bioenergy Syst. 3, 48–56 (2013)

    Article  Google Scholar 

  50. Armstrong, A., Caroline, J., Tubby, I.: Effects of spacing and cutting cycle on the yield of poplar grown as an energy crop. Biomass Bioener. 17, 305–314 (1999)

    Article  Google Scholar 

  51. Willebrand, E., Ledin, S., Verwijst, T.: Willow coppice systems in short rotation forestry: effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioener. 4, 323–331 (1993)

    Article  Google Scholar 

  52. Proe, M.F., Griffiths, J.H., Craig, J.: Effects of spacing, species and coppicing on leaf area, light interception and photosynthesis in short rotation forestry. Biomass Bioener. 23(5), 315–326 (2002)

    Article  Google Scholar 

  53. Harper, R.J., Sochacki, S.J., Smettem, K.R., Robinson, N.: Managing water in agricultural landscapes with short-rotation biomass plantations. Gcb Bioenerg. 6(5), 544–555 (2014)

    Article  Google Scholar 

  54. Bergkvist, P., Ledin, S.: Stem biomass yields at different planting designs and spacing’s in willow coppice systems. Biomass Bioener. 14:149–156 (1998)

    Article  Google Scholar 

  55. Mitchell, C.P.: New cultural treatments and yield optimization. Biomass Bioener. 9(1–5), 11–34 (1995)

    Article  Google Scholar 

  56. Di Matteo, G., Sperandio, G., Verani, S.: Field performance of poplar for bioenergy in southern Europe after two coppicing rotations: effects of clone and planting density. iForest 5(5), 224–227 (2012)

    Article  Google Scholar 

  57. Torreano, S.J., Frederick, D.J.: Influence of site condition, fertilization and spacing on short rotation hardwood coppice and seedling yields. Biomass 16(3), 183–198 (1998)

    Article  Google Scholar 

  58. Ghezehei, S.B., Shifflett, S.D., Hazel, D.W., Nichols, E.G.: SRWC bioenergy productivity and economic feasibility on marginal lands. J. Environ. Manag. 160, 57–66 (2015)

    Article  Google Scholar 

  59. Mitchell, C.P., Ford-Robertson, J.B., Hinckley, T., Sennerby-Forsse, L.: Ecophysiology of short-rotation forest crops. Elsevier, New York (1992)

    Google Scholar 

  60. Harper, G.J.: Quantifying branch, crown and bole development in Populus tremuloides Michx from north-eastern British Columbia. For. Ecol. Manag. 255, 2286–2296 (2008)

    Article  Google Scholar 

  61. Plomion, C., Leprovost, G., Stokes, A.: Wood formation in trees. Physiology. 127, 1513–1523 (2001)

    Google Scholar 

  62. Moya, R., Tomazello, M.: Variação radial da estrutura anatômica do lenho de árvores de Gmelina arborea em diferentes condições de clima e de manejo na Costa Rica. Scientia Florestalis 76, 65–75 (2009)

    Google Scholar 

  63. Vallejos, J., Moya, R., Serrano, R.: Effects of thinning on diameter, heartwood, density and drying defects of Gmelina arborea. Maderas Cien. Tecnol. 17(2), 365–372 (2015)

    Google Scholar 

  64. Little, C.H., Savidge, R.A.: The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul. 6(1–2), 137–169 (1987)

    Article  Google Scholar 

  65. Moya, R., Tomazello, M.: Wood density and fiber dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate. Rev Invest. Agraria Sist. Recur. For. 16(3), 267–276 (2007)

    Article  Google Scholar 

  66. Moya, R., Tenorio, C.: Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass Bioener. 56, 14–21 (2013)

    Article  Google Scholar 

  67. Jenkins, B.M., Baxter, L.L., Miles Jr, T.R., Miles, T.R.: Combustion properties of biomass. Fuel Process Technol. 54 (1–3), 17–46 (1998)

    Article  Google Scholar 

  68. Gominho, J., Lourenco, A., Miranda, I., Pereira, H. Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Ind. Crop Prod. 39(1), 12–16 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Vicerrectoría de Investigación y Extensión at the Instituto Tecnológico de Costa Rica (ITCR), Ingenio Taboga, Puro Verde S.A. and Coopeagri R.L., for the raw materials and facilities for the study. Also, many thanks to MICITT-CONICIT for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Moya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenorio, C., Moya, R. & Arias-Aguilar, D. Evaluation of Changes in Tree Morphology Parameters, Biomass Yield, Chemical and Energy Properties at Three Spacings of Short Rotation Energy Plantations of Gmelina arborea in Costa Rica, from 1 to 2 Years of Age. Waste Biomass Valor 9, 1163–1179 (2018). https://doi.org/10.1007/s12649-017-9896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9896-y

Keywords

Navigation