Skip to main content

Advertisement

Log in

Quality of Biochars Made from Eucalyptus Tree Bark and Corncob Using a Pilot-Scale Retort Kiln

Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In many developing countries, traditional earth-mound kilns are still the principal technology for biochar production. The present study focused on the production and characterization of two biochars from common agricultural and forestry residues in Cameroon: corncob and eucalyptus tree bark. A pilot-scale retort kiln, made from local material, was constructed for biochar production. Its production efficiency varied between 33 and 68%, compared to the 10–22% obtained with traditional biochar production systems. Both biochars exhibited good agronomic properties and fulfilled key quality criteria for soil carbon sequestration, as described by the European Biochar Certificate (EBC) and the International Biochar Initiative (IBI). Organic carbon (Corg) > 50%, H/Corg < 0.7, and potential toxic elements far below environmental threshold values. Both biochars passed seed germination and worm inhibition toxicity tests. They were characterized by similar physical properties, apart from greater water absorption observed for corncob biochar (CCB). Chemical properties differed; CCB had higher buffer capacity, and was richer in soluble potassium (5473 ppm) and in graphitic like carbon (37.7%) compared to eucalyptus bark biochar (EB) (897 ppm and 24.9%). The latter was less alkaline (pH 8.1 vs. 9.3 for CCB), had more than twice its electrical conductivity (0.68 vs. 0.25 dS m−1 for CCB) and ash content (10.1 vs. 5.3%); EB had higher sum of cations. Our results demonstrated that the constructed pyrolyser could be a current and feasible alternative to be used by farmers in Cameroon, to produce a quality biochar product from common residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A.: Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37, 611–630 (2011)

    Article  Google Scholar 

  2. Lehmann, J., Joseph, S.: Developing a biochar classification and test methods. Environ. Manag. 1, 107–126 (2009)

    Google Scholar 

  3. Scholz, S.M., Sembres, T., Roberts, K., Whitman, T., Wilson, K., Lehmann, J.: Biochar systems for smallholders in developing countries: leveraging current knowledge and exploring future potential for climate-smart agriculture. World Bank Publications, ‎Washington, D.C. (2014)

  4. Antal, M.J., Grønli, M.: The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)

    Article  Google Scholar 

  5. Brownsort, P.A.: Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits peter alexander brownsort (2009)

  6. Crombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A.: The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131 (2013)

    Article  Google Scholar 

  7. Song, W., Guo, M.: Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 94, 138–145 (2012)

    Article  Google Scholar 

  8. IBI: Standardized product definition and product testing guidelines for biochar that is used in soil. IBI biochar Stand. 1–47 (2012)

  9. Mašek, O., Brownsort, P., Cross, A., Sohi, S.: Influence of production conditions on the yield and environmental stability of biochar. Fuel. 103, 151–155 (2011)

  10. Schmidt, M.W.I., Noack, A.G., Osmond, G.: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–793 (2000)

    Article  Google Scholar 

  11. Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C.: Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300, 9–20 (2007)

    Article  Google Scholar 

  12. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C. a., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011)

    Article  Google Scholar 

  13. Sparrevik, M., Adam, C., Martinsen, V., Cornelissen, G.: ScienceDirect Emissions of gases and particles from charcoal / biochar production in rural areas using medium- sized traditional and improved “retort” kilns. Biomass Bioenergy 72, 1–9 (2014)

    Google Scholar 

  14. ASTM B923-10: Standard Test Method for Metal Powder Skeletal Density by Helium or Nitrogen. ASTM Int. 10–13 (2015)

  15. Flint, L.E., Flint, A.L.: Porosity. In: Dane, J.H., Topp, G.C. (eds.) Methods of soil analysis, soil science society of America. pp. 241–254. Madison (2002)

  16. ASTM D2862–10: Standard Test Method for Particle Size Distribution of Granular Activated Carbon 1. ASTM Int. i, 1–6 (2010)

  17. Allaire, S., Lange, L., Auclair, I., Quinche, M., Greffard, L., Team, T.C.: Rapport: Analyse des propriétés de biochars. CRMR-2015-SA-3. Cent. Rech. sur les Matériaux Renouvelables, Univ. Laval, Québec, Canada. 60 p. (2015)

  18. Allaire, S.E., Parent, L.E.: Physical Properties of Granular Organic-based Fertilisers, Part 2: Dynamic Properties Related to Water. Biosyst. Eng. 87, 225–236 (2004)

    Article  Google Scholar 

  19. ASTM D1762-84: Standard method for chemical analysis of wood charcoal (1990)

  20. Centre D’expertise En analyse environnementale Du Québec et Ministere De L’agriculture, D.P.E.D.L.D.Q.: Détermination de la matière organique par incinération†¯: méthode de perte de feu (PAF) MA. 1010—PAF 1.0, Ministère de l’Envir onnement du Québec. 9 (2003)

  21. US EPA: Standard Operating Procedure for Analysis of Total Organic Carbon in Sediments (Dry Combustion, IR Detection). USEPA. (2005)

  22. ASTM-D4373-14: Standard Test Method for Rapid Determination of Carbonate Content of Soils 1. 2, 2–5 (2014)

  23. CEAEQ, (Centre d’expertise en analyse environnementale du Québec): Protocole pour la validation d’une méthode d’analyse en chimie. 29 (2015)

  24. ISO: Direct reduced iron - Determination of carbon and/or sulfur-High-frequency combustion method with infrared measurement. ISO 96862. 14 (2006)

  25. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J.: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284 (2011)

    Article  Google Scholar 

  26. Enders, A., Lehmann, J.: Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil Sci. Plant Anal. 43, 1042–1052 (2012)

    Article  Google Scholar 

  27. AGDEX 533: Méthodes d’analyse des sols, des fumiers et des tissus végétaux. Conseil des productions végétales du Québec inc. (1989)

  28. Amacher, M., Henderson, R., Breithaupt, M.: Seale, cL, LaBauve, lM., 1990. Unbuffered and buffered salt methods for exchangeable cations and effective cation-exchange capacity. Soil Sei. Soc. Am. l. (1990)

  29. Brewer, C.E., Hu, Y.-Y., Schmidt-Rohr, K., Loynachan, T.E., Laird, D. a., Brown, R.C.: Extent of Pyrolysis Impacts on Fast Pyrolysis Biochar Properties. J. Environ. Qual. 41, 1115 (2012)

    Article  Google Scholar 

  30. LECO: Determinator instruction manual SC 632 Carbon / Sulfur, Version 1.4 X. LECO (2009)

  31. Meng, J., Wang, L., Liu, X., Wu, J., Brookes, P.C., Xu, J.: Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour. Technol. 142, 641–646 (2013)

    Article  Google Scholar 

  32. van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, a., Rust, J., Joseph, S., Cowie, a: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235–246 (2010)

    Article  Google Scholar 

  33. Major, J.: A Guide to Conducting Biochar Trials. IBI. (2009)

  34. CEAEQ, (Centre d’expertise en analyse environnementale du Québec): Méthode d’analyse Inhibition de la germination et de la croissance chez les semences de végétaux. Ministère du Développement durable, l’Environnement des Parc du Québec. 1–30 (2003)

  35. Mitelut, A.C., Popa, M.E.: Seed germination bioassay for toxicity evaluation of different composting biodegradable materials. Rom. Biotechnol. Lett. 16, 121–129 (2011)

    Google Scholar 

  36. Mala, R., Babu, S.S.: Comparative seed germination tests using three plant species for toxicity assessment of textile dyeing effluent. J Ind Pollut Control 21, 349–354 (2005)

    Google Scholar 

  37. Van der Stelt MJ, Gerhauser H, Kiel JH, Ptasinski KJ: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 35, 3748–3762 (2011)

    Google Scholar 

  38. EBC: European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’. Eur. Biochar Found. (EBC), Arbaz, Switzerland. Version 6.1 19th June, 1–22 (2012)

  39. Adam, J.C.: Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal). Renew. Energy 34, 1923–1925 (2009)

    Article  Google Scholar 

  40. Zhao, L., Cao, X., Wang, Q., Yang, F., Xu, S.: Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J. Environ. Qual. 42, 545–552 (2013)

    Article  Google Scholar 

  41. Ahmad, M., Subawi, H.: New Van Krevelen diagram and its correlation with the heating value of biomass. Res. J. Agric. Environ. Manag, 2, 295–301 (2013)

    Google Scholar 

  42. Liu, X., Zhang, Y., Li, Z., Feng, R., Zhang, Y.: Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresour. Technol. 170, 76–82 (2014)

    Article  Google Scholar 

  43. Guerrero, M., Ruiz, M.P., Alzueta, M.U., Bilbao, R., Millera, a: Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. J. Anal. Appl. Pyrolysis. 74, 307–314 (2005)

    Article  Google Scholar 

  44. Kuts P.S, Sheiman V.A.: Investigation of the Hygroscopic properties of peat insulating slabs. Eng. Phys. 9, 394–396 (1965)

  45. Handreck, K.A.: Particle size and the physical properties of growing media for containers. Commun. Soil Sci. Plant Anal. 14, 209–222 (1983)

    Article  Google Scholar 

  46. Verheijen, F., Jeffery, S., Bastos, A.C., Van der velde, M., Diasfas, I.: Biochar Application to Soils: A critical scientific review of effects on soil properties, processes and functions. (2010)

  47. Kaudal, B.B., Chen, D., Madhavan, D.B., Downie, A., Weatherley, A.: Pyrolysis of urban waste streams: Their potential use as horticultural media. J. Anal. Appl. Pyrolysis. (2015)

  48. George, R., B.: P. Encicl. Soil Sci. 300–311 (2007)

  49. Redding, T.E., Devito, K.J.: Particle densities of wetland soils in northern Alberta, Canada. Can. J. Soil Sci. 86, 57–60 (2006)

    Google Scholar 

  50. EBC, IBI: Comparison of European Biochar Certificate Version 4. 8 and IBI Biochar Standards Version 2. 0 European Biochar Certificate first publication March 2012. http//www.european-biochar.org/en/home IBI Biochar Stand. first Publ. May 2012 http//www. 1–5 (2014)

  51. Spokas, K.: Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag. 1, 289–303 (2010)

    Article  Google Scholar 

  52. Enders, A., Hanley, K., Whitman, T., Joseph, S., Lehmann, J.: Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012)

    Article  Google Scholar 

  53. Krull, E.: From source to sink - a national initiative for biochar research. Proc. 19th World Congr. Soil Sci. Soil Solut. a Chang. world Brisbane Aust. 16 August 2010 Congr. Symp. 7 Soil carbon sequestration. 8–10 (2010)

  54. Singh, B.P., Cowie, A.L., Smernik, R.J.: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778 (2012)

    Article  Google Scholar 

  55. Wang, T., Camps-Arbestain, M., Hedley, M., Singh, B.P., Calvelo-Pereira, R., Wang, C.: Determination of carbonate-C in biochars, 10.1071/SR13177, (2014)

  56. Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.K., Jung, J., Hyun, S.: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour. Technol. 148, 196–201 (2013)

    Article  Google Scholar 

  57. Hanlon, E. a.: Soil pH and Electrical Conductivity†¯: A County Extension Soil Laboratory Manual 1 Solubility of Plant Nutrients. Fla. Coop. Extn. Ser., IFAS, Univ. Fla., Gainesville, FL. 1–10 (2012)

  58. Jin, W., Singh, K., Zondlo, J.: Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3, 12–32 (2013)

    Article  Google Scholar 

  59. Mukherjee, A., Zimmerman, A.R., Harris, W.: Surface chemistry variations among a series of laboratory-produced biochars. Geoderma. 163, 247–255 (2011)

    Article  Google Scholar 

  60. Budai, A., Wang, L., Gronli, M., Strand, L.T., Antal, M.J., Abiven, S., Dieguez-Alonso, A., Anca-Couce, A., Rasse, D.P.: Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method. J. Agric. Food Chem. 62, 3791–3799 (2014)

    Article  Google Scholar 

  61. Mitchell, P.J., Dalley, T.S.L., Helleur, R.J.: Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. J. Anal. Appl. Pyrolysis. 99, 71–78 (2013)

    Article  Google Scholar 

  62. Mukome, F.N.D., Zhang, X., Silva, L.C.R., Six, J., Parikh, S.J.: Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food Chem. 61, 2196–2204 (2013)

    Article  Google Scholar 

  63. Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R.: A review of biochar and its use and function in soil. Adv. Agron. 105, 47–82 (2010)

    Article  Google Scholar 

  64. Yerima, K., B.P., Van Ranst, E.: Introduction to Soil Science: Soils of the Tropics. Trafford Publishing, Victoria (2005)

    Google Scholar 

  65. Denyes, M.J., Matovic, D., Zeeb, B.A., Rutter, A.: Report on the Production and Characterization of Biochar Produced at Burt’ s Greenhouses (Odessa, ON) Prepared by†¯ (2013)

  66. Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S.: Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 46, 437–444 (2008)

    Article  Google Scholar 

  67. Free, H., McGill, C., Rowarth, J., Hedley, M.: The effect of biochars on maize (Zea mays) germination. New Zealand J. New Zeal. J. Agric. Res. 53, 1–4 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the “Programme Élargi de Formation en Gestion des Ressources Naturelles dans le Bassin du Congo” (PEFOGRN_BC), Réseau des institutions de formation forestière et environnementale d’Afrique centrale (RIFFEAC), and the “Fonds pour les Forêts du Bassin du Congo” (FFBC) for their financial and logistical support. We also thank the laboratories of the FSAA with special thanks to Sébastien Lange and the FFGG at Université Laval, in particular Alain Brousseau, for their assistance in biochar analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Merlain Djousse Kanouo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djousse Kanouo, B.M., Allaire, S.E. & Munson, A.D. Quality of Biochars Made from Eucalyptus Tree Bark and Corncob Using a Pilot-Scale Retort Kiln. Waste Biomass Valor 9, 899–909 (2018). https://doi.org/10.1007/s12649-017-9884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9884-2

Keywords

Navigation