Skip to main content

Advertisement

Log in

A Novel Synthesis Method of Zeolite X From Coal Fly Ash: Alkaline Fusion Followed by Ultrasonic-Assisted Synthesis Method

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study was focused on synthesis of zeolite X from coal fly ash using the alkaline fusion method coupled with a novel method which uses ultrasonic energy for aging step. Optimum conditions were investigated using the Taguchi experimental design method. Synthesized zeolitic products were characterized by X-ray diffractometry, scanning electron microscopy, surface area, and cation exchange capacity analysis. Aging time was reduced from 24 to 2 h with usage of ultrasonic energy. Due to high surface area and similar crystal and morphological properties of the final products, we propose that the synthesized zeolitic products can serve as commercially competitive available material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jayaranjan, M.L.D., van Hullebusch, E.D., Annachhatre, A.P.: Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Biotechnol. 13, 467–486 (2014)

    Article  Google Scholar 

  2. Wang, S., Zhang, C., Chen, J.: Utilization of coal fly ash for the production of glass-ceramics with unique performances: a brief review. J. Mater. Sci. Technol. 30(12), 1208–1212 (2014)

    Article  Google Scholar 

  3. Longhurst, J.W.S., Brebbia, C.A.: Air pollution XXI. WIT Press, Southamptan (2013)

    Book  Google Scholar 

  4. Raja, A.K., Shriwastava, A.P., Dwivedi, M.: Power plant engineering. New Age International, New Delhi (2006) (e- book).

    Google Scholar 

  5. Ahmaruzzaman, M.: A review on the utilization of fly ash. Prog. Energy Combust. 36, 327–363 (2010)

    Article  Google Scholar 

  6. Blissett, R.S., Rowson, N.A.: A review of the multi-component utilisation of coal fly ash. Fuel 97, 1–23 (2012)

    Article  Google Scholar 

  7. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q.: A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 141, 105–121 (2015)

    Article  Google Scholar 

  8. Vassilev, S.V., Vassileva, C.G.: Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Energy Fuels 19, 1084–1098 (2005)

    Article  Google Scholar 

  9. Franus, W., Wdowin, M., Franus, M.: Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186, 5721–5729 (2014)

    Article  Google Scholar 

  10. Bandura, L., Franus, M., Jozefaciuk, G., Franus, W.: Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100–107 (2015)

    Article  Google Scholar 

  11. Inglezakis, V.J., Zorpas, A.A.: Handbook of Natural Zeolites. Bentham Science Publishers, Dubai (2012) (e-book).

    Book  Google Scholar 

  12. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R., Bonilla-Petriciolet, A.: Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage. 116, 213–221 (2013)

    Article  Google Scholar 

  13. Yi, H., Deng, H., Tang, X., Yu, Q., Zhou, X., Liu, H.: Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. J. Hazard. Mater. 203–204, 111–117 (2012)

    Article  Google Scholar 

  14. Wang, Y., Lin, F., Pang, W.: Ion exchange of ammonium in natural and synthesized zeolites. J. Hazard. Mater. 160(2–3), 371–375 (2008)

    Article  Google Scholar 

  15. Mohamed, R.M., Ismail, A.A., Kini, G., Ibrahim, I.A., Koopman, B.: Synthesis of highly ordered cubic zeolite A and its ion-exchange behavior. Coll. Surf. A 348(1–3), 87–92 (2009)

    Article  Google Scholar 

  16. Jensen, N.K., Rufford, T.E., Watson, G., Zhang, D.K., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57, 106–113 (2012)

    Article  Google Scholar 

  17. Aguado, S., Bergeret, G., Daniel, C., Farrusseng, D.: Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 134, 14635–14637 (2012)

    Article  Google Scholar 

  18. Widayatno, W.B., Guan, G., Rizkiana, J., Du, X., Hao, X., Zhang, Z., Abudul, A.: Selective catalytic conversion of bio-oil over high-silica zeolites. Bioresour. Technol. 179, 518–523 (2015)

    Article  Google Scholar 

  19. Narayanan, S., Vijaya, J.J., Sivasanker, S., Kennedy, L.J., Jesudoss, S.K.: Structural, morphological and catalytic investigations on hierarchical ZSM-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method. Powder Technol. 274, 338–348 (2015)

    Article  Google Scholar 

  20. Ríos, R.C.A., Williams, C.D., Roberts, C.L.: A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel 88, 1403–1416 (2009)

    Article  Google Scholar 

  21. Koshy, N., Singh, D.N.: Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 4, 1460–1472 (2016)

    Article  Google Scholar 

  22. Jha, B., Singh, D.N.: Fly ash zeolites: ınnovations, applications, and directions, applications of fly ash zeolites: case studies. Springer, Singapore (2016)

    Google Scholar 

  23. Tanaka, H., Matsumura, S., Furusawa, S., Hino, R.: Conversion of coal fly ash to Na-X zeolites. J Mater. Sci. Lett. 22, 323–325 (2003)

    Article  Google Scholar 

  24. Höller, H., Wirsching, U.: Zeolite formation from fly ash. Fortschr. Mineral. 63, 21–43 (1985)

    Google Scholar 

  25. Remenàrovà, L., Pipíška, M., Florkovà, E., Horník, M., Rozložník, M., Augustín, J.: Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol. Environ. Policy 16, 1551–1564 (2014)

    Article  Google Scholar 

  26. Behin, J., Bukhari, S.S., Kazemian, H., Rohani, S.: Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite. Fuel 171, 195–202 (2016)

    Article  Google Scholar 

  27. Kazemian, H., Naghdali, Z., Kashani, T.G., Farhadi, F.: Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv. Powder Technol. 21, 279–283 (2010)

    Article  Google Scholar 

  28. Ojha, K., Pradhan, N.C., Samanta, A.N.: Zeolite from fly ash: synthesis and characterization. Bull. Mater. Sci. 27(6), 555–564 (2004)

    Article  Google Scholar 

  29. Belviso, C., Cavalcante, F., Huertas, F., Lettino, J., Ragone, A., Fiore, P.S.: The crystallization of zeolite (X- and A- type) from fly ash at 25 °C in artificial sea water. Microporous Mesoporous Mater. 162, 115–121 (2012)

    Article  Google Scholar 

  30. Ameh, A.E., Fatoba, O.O., Musyoka, N.M., Petrik, L.F.: Influence of aluminium source on the crystal structure and framework coordination of Al and Si in fly ash-based zeolite NaA. Powder Technol. 306, 17–25 (2017)

    Article  Google Scholar 

  31. Bukhari, S.S., Behin, J., Kazemian, H., Rohani, S.: A comparative study using direct hydrothermal and indirect fusion methods to produce zeolites from coal fly ash utilizing single-mode microwave energy. J. Mater. Sci. 49, 8261–8271 (2014)

    Article  Google Scholar 

  32. Behin, J., Bukhari, S.S., Dehnavi, V., Kazemian, H., Rohani, S.: Using coal fly ash and wastewater for microwave synthesis of LTA zeolite. Chem. Eng. Technol. 37(9), 1532–1540 (2014)

    Article  Google Scholar 

  33. Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Andres, J.M., Juan, R., Ferrer, P., Ruiz, C.R.: A fast method for recycling fly ash: microwave-assisted zeolite synthesis. Environ. Sci. Technol. 31, 2527–2533 (1997)

    Article  Google Scholar 

  34. Inada, M., Tsujimoto, H., Educhi, Y., Enomoto, N., Hojo, J.: Microwave-assisted zeolite synthesis from coal fly ash in hydothermal process. Fuel 84, 1482–1486 (2005)

    Article  Google Scholar 

  35. Fukui, K., Arai, K., Kanayama, K., Yoshida, H.: Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Adv. Powder Technol. 17(4), 369–382 (2006)

    Article  Google Scholar 

  36. Tanaka, H., Fujimoto, S., Fujii, A., Hino, R., Kawazoe, T.: Microwave assisted two-step process for rapid synthesis of Na-A zeolite from coal fly ash. Ind. Eng. Chem. Res. 47, 226–230 (2008)

    Article  Google Scholar 

  37. Kim, J.K., Lee, H.D.: Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. J. Ind. Eng. Chem. 15, 736–742 (2009)

    Article  Google Scholar 

  38. Belviso, C., Cavalcante, F., Lettino, A., Fiore, S.: Effects of ultrasonic treatment on zeolite synthesized from coal fly ash. Ultrason. Sonochem. 18, 661–668 (2011)

    Article  Google Scholar 

  39. Belviso, C., Cavalcante, F., Fiore, S.: Ultrasonic waves induce rapid zeolite synthesis in a seawater solution. Ultrason. Sonochem. 20, 32–36 (2013)

    Article  Google Scholar 

  40. Wang, S., Zhu, Z.H.: Sonochemical treatment of fly ash for dye removal from wastewater. J. Hazard. Mater. 126, 91–95 (2005)

    Article  Google Scholar 

  41. Musyoka, N.M., Petrik, L.F., Hums, E.: Ultrasonic assisted synthesis of zeolite A from coal fly ash using mine waters (acid mine drainage and circum neutral mine water) as a substitute for ultrapure water. Aachen: “Mine Water-Managing the Challenges (IMWA 2011). pp. 423–428 (2011)

  42. Askari, S., Alipour, S.M., Halladj, R., Farahan, MHDA.: Effects of ultrasound on the synthesis of zeolites: a review. J. Porous Mater. 20, 285–302 (2013)

    Article  Google Scholar 

  43. Ojumu, T.V., Plessis, P.W., Petrik, L.F.: Synthesis of zeolite A from coal fly ash using ultrasonic treatment-A replacement for fusion step. Ultrason. Sonochem. 31, 342–349 (2016)

    Article  Google Scholar 

  44. Bukhari, S.S., Behin, J., Kazemian, H., Rohani, S.: Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 140, 250–266 (2015)

    Article  Google Scholar 

  45. Bukhari, S., Rohani, S., Kazemian, S.H.: Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash. Ultrason. Sonochem. 28, 47–53 (2016)

    Article  Google Scholar 

  46. Aldahri, T., Behin, J., Kazemiana, H., Rohani, S.: Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment. Fuel 182, 494–501 (2016)

    Article  Google Scholar 

  47. Nika, O.G., Sadrzadeh, M., Kaliaguine, S.: Surface grafting of FAU/EMT zeolite with (3-aminopropyl) methyldiethoxysilane optimized using Taguchi experimental design. Chem. Eng. Res. Des. 90, 1313–1321 (2012)

    Article  Google Scholar 

  48. Ding, L., Zheng, Y., Hong, Y., Ring, Z.: Effect of particle size on the hydrothermal stability of zeolite beta. Microporous Mesoporous Mater. 101, 432–439 (2007)

    Article  Google Scholar 

  49. Srivastava, V.C., Mall, I.D., Mishra, I.M.: Multicomponent adsorption study of metal ions onto bagasse fly ash using Taguchi’s design of experimental methodology. Ind. Eng. Chem. Res. 46, 5697–5706 (2007)

    Article  Google Scholar 

  50. Park, S.H.: Robust design and analysis for quality engineering. Chapman&Hall, London (1996)

    Google Scholar 

  51. Fowlkes, W.Y., Creveling, C.M. In: Wesner, J. (ed.) “Introduction to quality engineering”, engineering methods for robust product design, using Taguchi methods in technology and product development. Addison-Wesley Publishing, Boston (1995)

    Google Scholar 

  52. Gross-Lorgouilloux, M., Soulard, M., Caullet, P., Patarin, J., Moleiro, E., Saude, I.: Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: influence of additional silica. Microporous Mesoporous Mater. 127(1–2), 41–49 (2010)

    Article  Google Scholar 

  53. Bettinelli, M., Beone, G.M., Spezia, S., Baffi, C.: Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Anal. Chim. Acta 424, 289–296 (2000)

    Article  Google Scholar 

  54. EPA SW-846 Method 9081. U.S. Environmental Protection Agency. Cation-exchange capacity of soils (sodium acetate) (1986)

  55. Chen, Y., Xu, T., Xie, C., Han, H., Zhao, F., Zhang, J., Song, H., Wang, B.: Pure zeolite Na-P and Na-X prepared from coal fly ash under the effect of steric hindrance. J. Chem. Technol. Biotechnol. 91, 2018–2025 (2016)

    Article  Google Scholar 

  56. Chunfeng, W., Jiansheng, L., Xia, S., Lianjun, W., Xiuyun, S.: Evaluation of zeolites synthesized from fly as has potential adsorbents for wastewater containing heavy metals. J. Environ. Sci. 21, 127–136 (2009)

    Article  Google Scholar 

  57. Chunfeng, W., Jiansheng, L., Lianjun, W., Xiuyun, S., Jiajia, H.: Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies. Chin. J. Chem. Eng. 17(3), 513–521 (2009)

    Article  Google Scholar 

  58. Moutsatsou, A., Stamatakis, E., Hatzitzotzia, K., Protonotarios, V.: The utilization of Ca-rich and Ca–Si-rich fly ashes in zeolites production. Fuel. 85, 657–663 (2006)

    Article  Google Scholar 

  59. ASTM C 618-12-a (2012) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, Philadelphia

    Google Scholar 

  60. Pengthamkeerati, P., Satapanajaru, T., Chularuengoaksorn, P.: Chemical modification of coal fly ash for the removal of phosphatefrom aqueous solution. Fuel 87, 2469–2476 (2008)

    Article  Google Scholar 

  61. Dargahi, M., Kazemian, H., Soltanieh, M., Hosseinpour, M., Rohani, S.: High temperature synthesis of SAPO-34: applying an L9 Taguchi orthogonal design to investigate the effects of experimental parameters. Powder. Technol. 217, 223–230 (2012)

    Article  Google Scholar 

  62. Cundy, C.S., Cox, P.A.: The Hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82, 1–78 (2005)

    Article  Google Scholar 

  63. Zubowa, H., Kosslick, H., Muller, D., Richter, M., Wilde, L., Fricke, R.: Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Microporous Mesoporous Mater. 109, 542–548 (2008)

    Article  Google Scholar 

  64. El-Naggar, M.R., El-Kamash, A.M., El-Dessouky, M.I., Ghonaim, A.K.: Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 154, 963–972 (2008)

    Article  Google Scholar 

  65. Kalvachev, Y., Zgureva, D., Boycheva, S., Barbov, B., Petrova, N.: Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. J. Therm. Anal. Calorim. 124, 101–106 (2016)

    Article  Google Scholar 

  66. Espejel-Ayala, F., Schouwenaars, R., Dura ´n-Moreno, A.: Ramı ´rez-Zamora, R.M: Use of drinking water sludge in the production process of zeolites. Res. Chem. Intermed. 40, 2919–2928 (2014)

    Article  Google Scholar 

  67. Tosheva, L., Brockbank, A., Mihailova, B., Sutula, J., Ludwig, J., Potgieter, H., Verran, J.: Micron-and nanosized FAU-type zeolites from fly ash for antibacterial applications. J. Mater. Chem. 22, 16897–16905 (2012)

    Article  Google Scholar 

  68. Liu, L., Singh, R., Xiao, P., Webley, P.A., Zhai, Y.: Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 17, 795–800 (2011)

    Article  Google Scholar 

  69. He, K., Chen, Y., Tang, Z., Hu, Y.: Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ. Sci. Pollut. Res. 23, 2778–2788 (2016)

    Article  Google Scholar 

  70. Fotovat, F., Kazemian, H., Kazemeini, M.: Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mater. Res. Bull. 44, 913–917 (2009)

    Article  Google Scholar 

  71. Ruen-ngam, D., Rungsuk, D., Apiratikul, R., Pavasant, P.: Zeolite formation from coal fly ash and its adsorption potential. J. Air Waste Manage. Assoc. 59, 1140–1147 (2009)

    Article  Google Scholar 

  72. Cullity, B.D.: Elements of X-Ray diffraction, 3rd edn. Addison-Wesley Publishing Company Inc, Massachusetts (1967)

    Google Scholar 

  73. Lee, H.J., Kim, Y.M., Kweon, O.S., Kim, I.J.: Structural and morphological transformation of NaX zeolite crystals at high temperature. J. Eur. Ceram. Soc. 27, 561–564 (2007)

    Article  Google Scholar 

  74. Lee, H.J., Kim, Y.M., Kweon, O.S., Kim, I.J.: Crystal growing and reaction kinetic of large NaX zeolite crystals. J. Eur. Ceram. Soc. 27, 581–584 (2007)

    Article  Google Scholar 

  75. Izidoro, J.C., Fungaro, D.A., Abbott, J.E., Wang, S.: Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 103, 827–834 (2013)

    Article  Google Scholar 

  76. Molina, A., Poole, C.: A comparative study using two methods to produce zeolites from fly ash. Miner. Eng. 17, 167–173 (2004)

    Article  Google Scholar 

  77. Tanaka, H., Furusawa, S., Hino, R.: Synthesis, characterization, and formation process of Na-X zeolite from coal fly ash. J. Mater. Synth. Process 10(3), 143–148 (2002)

    Article  Google Scholar 

  78. Brassell, P.J., Ojumu, T.V., Petrik, L.F.: Upscaling of zeolite synthesis from coal fly ash waste: current status and future outlook. Zeolites-Useful Minerals. Intech (2016). doi:10.5772/63792

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabriye Piskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dere Ozdemir, O., Piskin, S. A Novel Synthesis Method of Zeolite X From Coal Fly Ash: Alkaline Fusion Followed by Ultrasonic-Assisted Synthesis Method. Waste Biomass Valor 10, 143–154 (2019). https://doi.org/10.1007/s12649-017-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0050-7

Keywords

Navigation