Skip to main content

Advertisement

Log in

Thermo-physical, Chemical and Structural Modifications in Torrefied Biomass Residues

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The study examined the modifications in the thermo-physical and chemical structure of Tectona grandis (TK) and Sorghum bicolour stalk residues that occurred during the process of torrefaction. The analytical techniques used are Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) alongside some basic data characterisation techniques. Data from specific FTIR spectra were used quantitatively in the evaluation of total crystalline and lateral order indices (TCI and LOI) for cellulose and syringyl to guaiacyl (S/G) ratio in lignin. The indices and the ratio were applied in monitoring modifications in cellulose crystallinity and lignin structure. The S/G ratio for untreated TK dropped significantly from 0.6 to 0.12 after torrefaction. An appreciable rise in the TCI and LOI was observed for both samples following the thermochemical conversion process. A distinct thermal decomposition pathway, which widen in discrepancy with increasing torrefaction temperature, was established between untreated and torrefied biomass residues via the TGA. The basic data analysis demonstrated a significant rise in the calorific value of torrefied biomass; approximately from an average of 19.1–26.8 MJ/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Azeez, A.M., Meier, D., Odermatt, J., Willner, T.: Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy Fuels 24, 2078–2085 (2010)

    Article  Google Scholar 

  2. Oloyede, I., Ayorinde, K.L., Oladele, F.A.: Greening the campus environment: The University of Ilorin experience. 12th General Conference, Association of African Universities, Abuja, Nigeria (2009)

  3. Food and Agricultural Organization of the United Nations (FAOSTAT). Retrieved from http://faostat3.fao.org/browse/Q/QC/E (2015)

  4. Mohammed, Y.S., Mustafa, M.W., Bashir, N., Mokhtar, A.S.: Renewable energy resources for distributed power generation in Nigeria: a review of the potential. Renew. Sustain. Energy Rev. 22, 257–268 (2013)

    Article  Google Scholar 

  5. van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35, 3748–3762 (2011)

    Google Scholar 

  6. Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S., Tshabalala, M.A.: Cell wall chemistry. In: Rowell, R.M. (ed.) Handbook of Wood Chemistry and Wood Composites, pp. 35–74. CRC Press, Boca Raton (2005)

    Google Scholar 

  7. Karinkanta, P., Illikainen, M., Niinimäki, J.: Effect of mild torrefaction on pulverization of Norway spruce (Picea abies) by oscillatory ball milling: particle morphology and cellulose crystallinity. Holzforschung 68, 337–343 (2014)

    Article  Google Scholar 

  8. Na, B., Ahn, B., Lee, J.: Changes in chemical and physical properties of yellow poplar (Liriodendron tulipifera) during torrefaction. Wood Sci. Technol. 49, 257–272 (2015)

    Article  Google Scholar 

  9. Ren, S., Lei, H., Wang, L., Bu, Q., Chen, S., Wu, J.: Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosyst. Eng. 116, 420–426 (2013)

    Article  Google Scholar 

  10. Wannapeera, J., Worasuwannarak, N.: Examinations of chemical properties and pyrolysis behaviours of torrefied woody biomass prepared at the same torrefaction mass yields. J. Anal. Appl. Pyrol. 115, 279–286 (2015)

    Article  Google Scholar 

  11. Soria, J.A., McDonald, A.G.: Liquefaction of softwoods and hardwoods in supercritical methanol: a novel approach to bio-oil production. In: Baskar, C., Baskar, S., Dhillon, R.S. (eds.) Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science, pp. 421–433. Springer, Berlin (2012)

    Chapter  Google Scholar 

  12. Park, J., Meng, J., Lim, K.H., Rojas, O.J., Park, S.: Transformation of lignocellulosic biomass during torrefaction. J. Anal. Appl. Pyrol. 100, 199–206 (2013)

    Article  Google Scholar 

  13. Toptas, A., Yildirim, Y., Duman, G., Yanik, J.: Combustion behavior of different kinds torrefied biomass and their blends with lignite. Bioresour. Technol. 177, 328–336 (2015)

    Article  Google Scholar 

  14. Nhuchhen, D.R.: Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180, 348–356 (2016)

    Article  Google Scholar 

  15. Tsalidis, G., Joshi, Y., Korevaar, G., de Jong, W.: Life cycle assessment of direct co-firing of torrefied and/or pelletised woody biomass with coal in The Netherlands. J. Clean. Prod. 81, 168–177 (2014)

    Article  Google Scholar 

  16. Nunes, L.J.R., Matias, J.C.O., Catalão, J.P.S.: A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 40, 153–160 (2014)

    Article  Google Scholar 

  17. Carrillo, F., Colom, X., Sunol, J.J., Saurina, J.: Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur. Polym. J. 40, 2229–2234 (2004)

    Article  Google Scholar 

  18. Akerholm, M., Hinterstoisser, B., Salmen, L.: Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr. Res. 339, 569–578 (2004)

    Article  Google Scholar 

  19. Yildiz, S., Gumuskaya, E.: The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build. Environ. 42, 62–67 (2007)

    Article  Google Scholar 

  20. Chen, M., McClure, J.W.: Altered lignin composition in phenylalanine ammonia-lyase-inhibited radish seedlings: implications for seed derived sinapoyl esters as lignin precursors. Phytochemistry 53, 365–370 (2000)

    Article  Google Scholar 

  21. Ibrahim, R.H.H., Darvell, L.I., Jones, J.M., Williams, A.: Physicochemical characterization of torrefied biomass. J. Anal. Appl. Pyrol. 103, 21–30 (2013)

    Article  Google Scholar 

  22. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Wang, X., He, F., Li, H.: Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour. Technol. 128, 370–377 (2013)

    Article  Google Scholar 

  23. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G., He, F., Li, H.: Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour. Technol. 176, 15–22 (2015)

    Article  Google Scholar 

  24. Hill, S.J., Grigsby, W.J., Hall, P.W.: Chemical and cellulose crystallite changes in Pinus radiata during torrefaction. Biomass Bioenergy 56, 92–98 (2013)

    Article  Google Scholar 

  25. Balogun, A.O., Lasode, O.A., McDonald, A.G.: Thermo-analytical and physico-chemical characterization wood and non-woody biomass from an agro-ecological zone in Nigeria. BioResources 9, 5099–5113 (2014)

    Article  Google Scholar 

  26. Lasode, O.A., Balogun, A.O., McDonald, A.G.: Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J. Anal. Appl. Pyrol. 109, 47–55 (2014)

    Article  Google Scholar 

  27. American Standard of Testing and Materials. ASTM D1102-84. Standard test method for ash in wood, West Conshohocken, Pennsylvania, ASTM International (2007)

  28. British Standards Institution. BS EN 15148:2009. Solid biofuels: determination of the content of volatile matter. London, BSI

  29. Friedl, A., Padouvas, E., Rotter, H., Varmuza, K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chem. 554, 191–198 (2005)

    Google Scholar 

  30. Faix, O.: Fourier transform infrared spectroscopy. In: Lin, S.Y., Dence, C.W. (eds.) Methods in Lignin Chemistry, pp. 83–109. Springer, Berlin (1992)

    Chapter  Google Scholar 

  31. Gaur, S., Reed, T.B.: Thermal Data for Natural Synthetic Fuels. Marcel Dekker, New York (1998)

    Google Scholar 

  32. Balogun, A.O., Lasode, O.A., Li, H., McDonald, A.G.: Fourier transform infrared (FTIR) study and thermal decomposition kinetics of Sorghum bicolour glume and Albizia pedicellaris residues. Waste Biomass Valoriz. 6, 109–116 (2015)

    Article  Google Scholar 

  33. Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., Hajaligol, M.R.: Characterization of chars from pyrolysis of lignin. Fuel 83, 1469–1482 (2004)

    Article  Google Scholar 

  34. Santos, J.: Mechanical behavior of Eucalyptus wood modified by heat. Wood Sci. Technol. 34, 39–43 (2000)

    Article  Google Scholar 

  35. Carrasco, F., Roy, C.: Kinetic study of dilute acid prehydrolysis xylan containing biomass. Wood Sci. Technol. 26, 189–208 (1992)

    Google Scholar 

  36. Reiniati, I., Osman, N.B., McDonald, A.G., Laborie, M.-P.: Linear viscoelasticity of hot-pressed hybrid poplar relates to densification and to the in situ molecular parameters of cellulose. Ann. For. Sci. 72, 693–703 (2015)

    Article  Google Scholar 

  37. Weimer, P.J., Hackey, J.M., French, A.D.: Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation. Biotechnol. Bioeng. 48, 169–178 (1995)

    Article  Google Scholar 

  38. Bhuiyan, M.T.R., Hirai, N., Sobue, N.: Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 46, 431–436 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Lower Niger River Basin Development Authority sponsorship program. The FTIR spectrometer was supported by USDA-CSREES-NRI Grant Number 2005-35103-15243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayokunle O. Balogun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogun, A.O., Lasode, O.A. & McDonald, A.G. Thermo-physical, Chemical and Structural Modifications in Torrefied Biomass Residues. Waste Biomass Valor 9, 131–138 (2018). https://doi.org/10.1007/s12649-016-9787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9787-7

Keywords

Navigation