Skip to main content
Log in

Hydrocarbons from Bio-oils: Performance of the Matrix in FCC Catalysts in the Immediate Catalytic Upgrading of Different Raw Bio-oils

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Matrices of FCC catalysts with different content of alumina and the compound catalysts prepared with them including Y zeolite were used to upgrade bio-oils from pine wood sawdust and soybean shell. The biomasses were selected according to their different lignin content which results in very different proportions of phenolic compounds (coke precursors) in the respective bio-oils. The bio-oils were produced by fast pyrolysis and the vapours were immediately upgraded over a fixed bed of catalyst at 550 °C using a mass catalyst/bio-oil relationship of 3.5. In terms of hydrocarbon yield, the matrices were more effective in deoxygenating pine wood sawdust bio-oil and the compound catalysts in deoxygenating soybean shell bio-oil. These differences can be the consequence of the different compositions of the bio-oils which, in the case of pine wood sawdust, includes a significant concentration of phenolic ethers which form coke on the matrix and the external surface of the zeolite, thus preventing lighter compounds from accessing the micropore system of the compound catalysts. Pine sawdust bio-oil produced more coke than soybean shell bio-oil; in the case of compound catalysts, coke deposited preferentially on the catalyst matrix, thus decreasing its mesopore specific surface area up to 65 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brigdwater, A.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)

    Article  Google Scholar 

  2. Elliott, D.: Historical developments in hydroprocessing bio-oils. Energy Fuels 21, 1792–1815 (2007)

    Article  Google Scholar 

  3. French, R., Hrdlicka, J., Baldwin, J.: Mild hydrotreating of biomass pyrolysis oils to produce a suitable refinery feedstock. Energy 29, 142–150 (2010)

    Google Scholar 

  4. Mortensen, P., Grunwaldt, J., Jensen, P., Knudsen, K., Jensen, A.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011)

    Article  Google Scholar 

  5. Perego, C., Bosetti, A.: Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater. 144, 28–39 (2011)

    Article  Google Scholar 

  6. Fogassy, G., Thegarid, N., Schuurman, Y., Mirodatos, C.: The fate of bio-carbon in FCC co-processing products. Green Chem. 14, 1367–1371 (2012)

    Article  Google Scholar 

  7. Thegarid, N., Fogassy, G., Schuurman, Y., Mirodatos, C., Stefanidis, S., Iliopoulou, I., Kalogiannis, K., Lappas, A.: Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl. Catal. B Environ. 165, 161–166 (2014)

    Article  Google Scholar 

  8. Rezaei, P., Shafaghat, H., Ashri, W., Daud, W.: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl. Catal. A Gen. 469, 490–511 (2014)

    Article  Google Scholar 

  9. Bertero, M., Sedran, U.: Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts. Bioresour. Technol. 135, 644–651 (2013)

    Article  Google Scholar 

  10. Adjaye, J., Bakhshi, N.: Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: conversion over various catalysts. Fuel Process. Technol. 45, 161–183 (1995)

    Article  Google Scholar 

  11. Vitolo, S., Seggiani, M., Frediani, P., Ambrosini, G., Politi, L.: Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel 78, 1147–1159 (1999)

    Article  Google Scholar 

  12. Yu, Y., Li, X., Su, L., Zhang, Y., Wang, Y., Zhang, H.: The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl. Catal. A Gen. 447, 115–123 (2012)

    Article  Google Scholar 

  13. Agblevor, F., Mante, O., McClung, R., Oyama, S.: Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels. Biomass Bioenergy 45, 130–137 (2012)

    Article  Google Scholar 

  14. Bertero, M., Sedran, U.: Coprocessing of bio-oil in fluid catalytic cracking. In: Pandey, A., Bhaskar, T., Stocker, M. (eds.) Recent advances in thermo-chemical conversion of biomass, pp. 355–381. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  15. Vitolo, S., Bresci, B., Seggiani, M., Gallo, M.: Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 80, 17–26 (2001)

    Article  Google Scholar 

  16. Valle, B., Castaño, P., Olazar, M., Bilbao, J., Gayubo, A.: Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. J. Catal. 285, 304–314 (2012)

    Article  Google Scholar 

  17. Gueudré, L., Milina, M., Mitchell, S., Pérez-Ramírez, J.: Coke chemistry under vacuum gasoil/bio-oil FCC co-processing conditions. Adv. Funct. Mater. 24, 209–219 (2014)

    Article  Google Scholar 

  18. Scherzer, J.: Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects. Catal. Rev. Sci. Eng. 31, 215–254 (1989)

    Article  Google Scholar 

  19. Wojciechowski, B., Corma, A.: Catalytic cracking: catalysts, chemistry and kinetics, p. 236. Marcel Dekker, New York (1986)

    Google Scholar 

  20. Scherzer, J.: Designing FCC catalysts with high-silica Y zeolites. Appl. Catal. 75, 1–32 (1991)

    Article  Google Scholar 

  21. de la Puente, G., Falabella, E., Sousa-Aguiar, M., Figueiredo Costa, A., Sedran, U.: The influence on selectivity of the aluminum content in the matrix of FCC catalysts. Appl. Catal. A Gen. 242, 381–391 (2003)

    Article  Google Scholar 

  22. Carlson, T., Tompsett, G., Conner, W., Huber, G.: Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top. Catal. 52, 241–252 (2009)

    Article  Google Scholar 

  23. Bertero, M., de la Puente, G., Sedran, U.: Products and coke from the conversion of bio-oil acids, esters, aldehydes and ketones over equilibrium FCC catalysts. Renew. Energy 60, 349–354 (2013)

    Article  Google Scholar 

  24. Bertero, M., Sedran, U.: Immediate catalytic upgrading of soybean shell bio-oil. Energy (2015). doi:10.1016/j.energy.2015.10.114

    Google Scholar 

  25. Magee, J., Blazek, J.: Zeolite chemistry and catalysis. In: Rabo, J. (ed.) ACS Monograph, vol. 171, p. 615. ACS, Washington (1976)

    Google Scholar 

  26. Al-Khattaf, S., de Lasa, H.: The role of diffusion in alkyl-benzenes catalytic cracking. Appl. Catal. A 226, 139–153 (2002)

    Article  Google Scholar 

  27. Johnson, M.: Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. J. Catal. 52, 425–431 (1978)

    Article  Google Scholar 

  28. García, J., Bertero, M., Falco, M., Sedran, U.: Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Appl. Catal. A Gen. 503, 1–8 (2015)

    Article  Google Scholar 

  29. Stefanidis, S., Kalogiannis, K., Illiopoulou, E., Lappas, A., Pilavachi, P.: In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Bioresour. Technol. 102, 8261–8267 (2011)

    Article  Google Scholar 

  30. Adjaye, J., Katikaneni, S., Bakhshi, N.: Catalytic conversion of a fuel to hydrocarbons: effect of mixture of HZSM-5 and silica-alumina catalyst on product distribution. Fuel Process. Technol. 48, 115–143 (1996)

    Article  Google Scholar 

  31. Huber, G., Corma, A.: Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46, 7184–7201 (2007)

    Article  Google Scholar 

  32. Leydier, F., Chizallet, C., Costa, D., Raybaud, P.: Revisiting carbenium chemistry on amorphous silica-alumina: unraveling their milder acidity as compared to zeolites. J. Catal. 325, 35–47 (2015)

    Article  Google Scholar 

  33. Srinivas, S., Dalai, A., Bakhshi, N.: Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Can. J. Chem. Eng. 78, 343–354 (2000)

    Article  Google Scholar 

  34. Gayubo, A., Aguayo, A., Atutxa, A., Valle, B., Bilbao, J.: Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst. J. Chem. Technol. Biotechnol. 80, 1244–1251 (2005)

    Article  Google Scholar 

  35. Foster, A., Jae, J., Cheng, Y., Huber, G., Lobo, R.: Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl. Catal. A Gen. 423, 154–161 (2012)

    Article  Google Scholar 

  36. Adjaye, J., Bakhshi, N.: Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process. Technol. 45, 185–202 (1995)

    Article  Google Scholar 

  37. Adjaye, J., Bakhshi, N.: Catalytic conversion of a biomass-derived oil to fuels and chemical I: model compound studies and reaction pathways. Biomass Bioenergy 8, 131–149 (1995)

    Article  Google Scholar 

  38. Bertero, M., Sedran, U.: Upgrading of bio-oils over equilibrium FCC catalysts. Contribution from alcohols, phenols and aromatic ethers. Catal. Today 212, 10–15 (2013)

    Article  Google Scholar 

  39. Corma, A., Huber, G., Sauvanaud, L., O’connor, P.: Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal. 247, 307–327 (2007)

    Article  Google Scholar 

  40. Gayubo, A., Aguayo, A., Atutxa, A., Aguado, R., Bilbao, J.: Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind. Eng. Chem. Res. 43, 2610–2618 (2004)

    Article  Google Scholar 

  41. Graça, I., Lopes, J., Ribeiro, M., Ramoa, F., Cerqueira, H., de Almeida, M.: Catalytic cracking in the presence of guaiacol. Appl. Catal. B Environ. 101, 613–621 (2011)

    Article  Google Scholar 

  42. Stefanidis, S., Kalogiannis, K., Iliopoulou, E., Michailof, C., Pilavachi, P., Lappas, A.: A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrol. 105, 143–150 (2014)

    Article  Google Scholar 

  43. Chantal, P., Kaliaguine, S., Grandmaison, J.: Reactions of phenolic compounds over HZSM-5. Appl. Catal. 18, 133–145 (1985)

    Article  Google Scholar 

  44. Moldoveanu, S.: Pyrolysis in Organic Molecules with Applications to Health and Environmental, p. 744. Elsevier, Amsterdam (2010)

    Google Scholar 

  45. Sitompul, J., Simangunsong, R., Asrizal, A., Alisyahbana, H., Lee, H., Rasrendra, C.: Catalytic conversion of empty fruit bunch of palm oil for producing lactic acid. Proc. Chem. 9, 88–93 (2014)

    Article  Google Scholar 

  46. Park, H., Dong, J., Jeon, J., Seun Yoo, K., Yim, J., Min Sohn, J., Park, Y.: Conversion of the pyrolytic vapor of radiata pine over zeolites. J. Ind. Eng. Chem. 13, 182–189 (2007)

    Google Scholar 

  47. Sadeghbeigi, R.: Chemistry of FCC reactions. In: Sadeghbeigi, R. (ed.) Fuid Catalytic Cracking Handbook, 3rd edn, pp. 125–135. Elsevier, Amsterdam (2012)

    Chapter  Google Scholar 

  48. Samolada, M., Papafotica, A., Vasalos, I.: Catalyst evaluation for catalytic biomass pyrolysis. Energy Fuels 14, 1161–1167 (2000)

    Article  Google Scholar 

  49. Fuhse, J., Bandermann, F.: Conversion of organic oxygenated compounds and their mixtures on H-ZSM5. Chem. Eng. Technol. 10, 323–329 (1987)

    Article  Google Scholar 

  50. Iliopoulou, E., Antonakou, E., Karakoulia, S., Vasalos, I., Lappas, A., Triantafyllidis, K.: Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem. Eng. J. 134, 51–57 (2007)

    Article  Google Scholar 

  51. Williams, P., Horne, P.: The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J. Anal. Appl. Pyrolysis 31, 39–61 (1995)

    Article  Google Scholar 

  52. Carlson, T., Vispute, T., Huber, G.: Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1, 397–400 (2008)

    Article  Google Scholar 

  53. Pazzona, F., Borah, B., Demontis, P., Suffriti, G., Yashonath, S.: A comparative molecular dynamics study of diffusion of n-decane and 3-methyl pentane in Y zeolite. J. Chem. Sci. 21, 921–927 (2009)

    Article  Google Scholar 

  54. Diebold, J., Scahill, J.: Production of primary pyrolysis oils in a vortex reactor. In: Soltes, E.J., Milne, T.A. (Eds.) Pyrolysis Oils from Biomass: Producing, Analyzing and Upgrading, pp. 31–40. ACS Symposium Series, vol. 376, Washington (1988)

  55. Shang, J., Bisson, B., Wynkoop, R.: Gasoline containing a methyl phenol. U.S. Patent 3,836,342, Sun Research and Development Co. (1974)

  56. Shang, J. Bisson, B. Wynkoop, R.: Composition comprising a methyl phenol and an ether for gasoline fuels. U.S. Patent 3,976,437, Sun Ventures, Inc. (1976)

  57. Hoffman, D.: High octane gasoline component. U.S. 3,782,911. Sun Research and Development Co. (1974)

  58. Zhao, Y., Fu, Y., Guo, Q.: Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass. Bioresour. Technol. 114, 740–744 (2012)

    Article  Google Scholar 

  59. Gayubo, A., Valle, B., Aguayo, A., Olazar, M., Bilbao, J.: Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bio-oil by catalytic transformation. J. Chem. Biotechnol. 85, 132–144 (2010)

    Article  Google Scholar 

  60. Huang, J., Long, W., Agrawal, P., Jones, C.: Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H–Y zeolites. J. Phys. Chem. C 113, 16702–16710 (2009)

    Article  Google Scholar 

  61. Gayubo, A., Aguayo, A., Atutxa, A., Aguado, R., Olazar, M., Bilbao, J.: Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones and acids. Ind. Eng. Chem. Res. 43, 2619–2626 (2004)

    Article  Google Scholar 

  62. Jae, J., Tompsett, G., Foster, A., Hammond, K., Auerbach, S., Lobo, R., Huber, G.: Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J. Catal. 279, 257–268 (2011)

    Article  Google Scholar 

  63. Gayubo, A., Aguayo, A., Atutxa, A., Prieto, R., Bilbao, J.: Deactivation of a HZSM-5 zeolite catalyst in the transformation of the aqueous fraction of biomass pyrolysis oil into hydrocarbons. Energy Fuels 18, 1640–1647 (2004)

    Article  Google Scholar 

  64. Gayubo, A., Valle, B., Aguayo, A., Olazar, M., Bilbao, J.: Olefin production by catalytic transformation of crude bio-oil in a two-step process. Ind. Eng. Chem. Res. 49, 123–131 (2009)

    Article  Google Scholar 

  65. Cerqueira, H., Caeiro, G., Costa, L., Ramôa Ribeiro, F.: Deactivation of FCC catalysts. J. Mol. Catal. A Chem. 292, 1–13 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed with the financial assistance of Universidad Nacional del Litoral (Santa Fe, Argentina), Secretary of Science and Technology, Proj. CAID 2011 #501-201101-00546LI; CONICET, PIP 593/13 and the National Agency for Scientific and Technological Promotion, PICT 2010/2123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises Sedran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertero, M., García, J.R., Falco, M. et al. Hydrocarbons from Bio-oils: Performance of the Matrix in FCC Catalysts in the Immediate Catalytic Upgrading of Different Raw Bio-oils. Waste Biomass Valor 8, 933–948 (2017). https://doi.org/10.1007/s12649-016-9624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9624-z

Keywords

Navigation