Skip to main content
Log in

Microbial Conversion of Crude Glycerol to Dihydroxyacetone

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Glycerol is increasingly being used as a versatile raw material within the biorefinery. However, it is very expensive to refine the crude glycerol to a high purity. In this study, the biotransformation of crude glycerol (79 % purity) using Gluconobacter oxydans spp. oxydans for the production of fine chemical dihydroxyacetone (DHA) was investigated. A conversion of up to 90 % with crude glycerol was demonstrated when using sorbitol as a secondary carbon source to enhance biomass production. A novel process for the recovery of DHA employing generation of foam, filtration and reverse osmosis, was developed. Using this strategy the protein content was reduced by up to 80 % and DHA recovery higher than 94 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCoy, M.: Glycerin surplus. Chem. Eng. News 84, 7–8 (2006)

    Google Scholar 

  2. Rymowicz, W., Rywinska, A., Zarowska, B., Juszczyk, P.: Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem. Pap. 60, 391–394 (2006)

    Article  Google Scholar 

  3. Yori, J.C., D’Ippolito, S.A., Pieck, C.L., Vera, C.R.: Deglycerolization of biodiesel streams by adsorption over silica beds. Energy Fuels 21, 347–353 (2007)

    Article  Google Scholar 

  4. Amon, T., Kryvoruchko, V., Amon, B., Schreiner, M.: Untersuchungen zur Wirkung von Rohglycerin aus der Biodieselerzeugung als leistungssteigerndes Zusatzmittel zur Biogaserzeugung aus Silomais, Körnermais, Rapspresskuchen und Schweinegülle, Endbericht für Südsteirische Energie-und Eiweisserzeugung Reg.Gen.mbH (SEEG) Thesis (2004)

  5. Hirschmann, S., Bagnaz, K., Koschik, I., Vorlop, K.: Development of an integrated bioconversion process for the production of 1, 3-propanediol from raw glycerol waters. Landbauforsch. Volkenr. 55, 261–267 (2005)

    Google Scholar 

  6. Gupta, A., Singh, V.K., Qazi, G.N., Kumar, A.: Gluconobacter oxydans: its biotechnological applications. J. Mol. Microbiol. Biotechnol. 3, 445–456 (2001)

    Google Scholar 

  7. Hekmat, D., Bauer, R., Fricke, J.: Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26, 109–116 (2003)

    Article  Google Scholar 

  8. Behr, A., Eilting, J., Irawadi, K., Leschinski, J., Lindner, F.: Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem. 10, 13–30 (2008)

    Article  Google Scholar 

  9. Park, Y.S., Ohtake, H., Toda, K., Fukaya, M., Okumura, H., Kawamura, Y.: Acetic acid production using a fermentor equipped with a hollow fiber filter module. Biotechnol. Bioeng. 33, 918–923 (1989)

    Article  Google Scholar 

  10. Park, Y.S., Toda, K., Fukaya, M., Okumura, H., Kawamura, Y.: Production of a high concentration acetic acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling. Appl. Microbiol. Biotechnol. 35, 149–153 (1991)

    Google Scholar 

  11. Bhattacharya, P., Ghosal, S.K., Sen, K.: Column design parameters for foam fractionating human placental extract. Sep. Sci. Technol. 29, 855–865 (1994)

    Article  Google Scholar 

  12. Brown, L., Narsimhan, G., Wankat, P.C.: Foam fractionation of globular proteins. Biotechnol. Bioeng. 36, 947–959 (1990)

    Article  Google Scholar 

  13. Charm, S.E., Morningstar, J., Matteo, C.C., Paltiel, B.: The separation and purification of enzymes through foaming. Anal. Biochem. 15, 498–508 (1966)

    Article  Google Scholar 

  14. Banerjee, R., Agnihotri, R., Bhattacharyya, B.C.: Purification of alkaline protease of Rhizopus oryzae by foam fractionation. Bioprocess Biosyst. Eng. 9, 245–248 (1993)

    Article  Google Scholar 

  15. Hekmat, D., Bauer, R., Neff, V.: Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42, 71–76 (2007)

    Article  Google Scholar 

  16. Karger, B.L., Devivo, D.G.: General survey of adsorptive bubble separation processes. Sep. Sci. Technol. 3, 393–424 (1968)

    Google Scholar 

  17. Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  18. Raška, J., Skopal, F., Komers, K., Machek, J.: Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun. 72, 1269–1283 (2007)

    Article  Google Scholar 

  19. Claret, C., Bories, A., Soucaille, P.: Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr. Microbiol. 25, 149–155 (1992)

    Article  Google Scholar 

  20. Pyle, D.J., Garcia, R.A., Wen, Z.: Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 56, 3933–3939 (2008)

    Article  Google Scholar 

  21. Yamada, S., Wada, M., Chibata, I.: Oxygen transfer in shaken flask cultures and the conversion of sorbitol by Acetobacter suboxydans. J. Ferment. Technol. 56, 20–28 (1978)

    Google Scholar 

  22. Yamada, S., Nabe, K., Izuo, N., Wada, M., Chibata, I.: Fermentative production of dihydroxyacetone by Acetobacter suboxydans ATCC621. J. Ferment. Technol. 57, 215–220 (1979)

    Google Scholar 

  23. Ohrem, H.L., Westmeier, F.: Microbial process for the preparation of dihydroxyacetone with recycling of biomass, US Patent 5770411 A. (1998)

  24. Uraizee, F., Narsimhan, G.: Effects of kinetics of adsorption and coalescence on continuous foam concentration of proteins: comparison of experimental results with model predictions. Biotechnol. Bioeng. 51, 384–398 (1996)

    Article  Google Scholar 

  25. Noble, M., Brown, A., Jauregi, P., Kaul, A., Varley, J.: Protein recovery using gasûliquid dispersions. J. Chrom. B Biomed. Appl. 711, 31–43 (1998)

    Article  Google Scholar 

  26. Samhaber, W.M.: Erfahrungen und Anwendungspotential der Nanofiltration, VDI-Wissensforum “Membrantechnik in der Prozeßindustrie”. 1, 1–17 (2006)

Download references

Acknowledgments

The authors wish to express their sincere thanks to the Research Centre Applied Biocatalysis and the VTU Engineering (Grambach, Austria) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gibson S. Nyanhongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebminger, S., Hofbauer, R., Siebenhofer, M. et al. Microbial Conversion of Crude Glycerol to Dihydroxyacetone. Waste Biomass Valor 5, 781–787 (2014). https://doi.org/10.1007/s12649-013-9288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9288-x

Keywords

Navigation