Skip to main content
Log in

Numerical study of the chiral effect in C60 fullerite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The dynamics of a C60 fullerene located near the axis of rotation of a fullerite fragment of consisting of 63 fullerenes forming a face-centered cubic lattice has been studied numerically. The achiral molecule C60 under consideration has the highest symmetry in the fullerene family and is mathematically modeled as a discrete covalent molecule or as a spherical particle. This molecule rotates around its center of mass in a fullerite crystal with a frequency of about 100 GHz. Numerical study of C60 molecular rotators located in rotating reference frames was carried out using molecular dynamics methods, a hybrid discrete–continuous mathematical model, the Euler approach and the fourth order Runge–Kutta method for numerical solution of differential equations. A parametric study of the influence of the direction and frequency of rotation of a molecular cluster (up to 1 GHz) on the reorientation time and rotational dynamics of the fullerene molecule was carried out in the picosecond range (up to 10 ps). Chiral phenomena in the C60 molecular crystal and the logarithmic dependence of the reorientation time of C60 fullerene on the rotation period of the fullerite were discovered based on the results of numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Arabgol and T Sleator Phys. Rev. Lett. 122 177202 (2019)

    Article  ADS  Google Scholar 

  2. S Bretzel, G E W Bauer, Y Tserkovnyak and A Brataas Phys. Lett. 95 122504 (2009)

    Article  ADS  Google Scholar 

  3. H Keshtgar, S Streib, A Kamra, Y M Blanter and G E W Bauer Phys. Rev. B 95 134447 (2017)

    Article  ADS  Google Scholar 

  4. K Fukushima Progr. Part. Nucl. Phys. 107 167 (2019)

    Article  ADS  Google Scholar 

  5. C Dornes, Y Acremann, M Savoini, M Kubli, M J Neugebauer, E Abreu, L Huber, G Lantz, C A F Vaz et al Nature 565 209 (2019)

    Article  ADS  Google Scholar 

  6. L D Landau and E M Lifshitz Chapter III - The Gibbs distribution in statistical physics, 3rd edn. (Oxford: Butterworth-Heinemann) p 79 (1980)

    Google Scholar 

  7. P V Buividovich, E V Lushchevskaya, M I Polikarpov and M N Chernodub Jetp Lett. 90 412 (2009)

    Article  ADS  Google Scholar 

  8. M N Chernodub, V A Goy and A V Molochkov Phys. Rev. Lett. 130 111802 (2023)

    Article  ADS  Google Scholar 

  9. X-G Huang and A V Sadofyev J. High Energ. Phys. 2019 84 (2019)

    Article  Google Scholar 

  10. V Krishnan et a. Mater. Interf. 7 15667 (2015)

    Article  Google Scholar 

  11. J G Chigvinadze, S M Ashimov, A V Dolbin and V Buntar Low Temp. Phys. 42 119 (2016)

    Article  ADS  Google Scholar 

  12. D Pu and Y Pan Cer. Int. 48 20438 (2022)

    Article  Google Scholar 

  13. Y Pan Mater Today Commun 37 107178 (2023)

    Article  Google Scholar 

  14. D Pu, Y Pan and J Am Ceram Soc. 105 2858 (2022)

    Article  Google Scholar 

  15. Y Pan Int. J. Refr. Metals Hard Mater. 115 106277 (2023)

    Article  Google Scholar 

  16. Y Pan Mater. Today Chem. 35 101915 (2024)

    Article  Google Scholar 

  17. C L Brooks, D A Case, S Plimpton, B Roux, D van der Spoel and E Tajkhorshid J. Chem. Phys. 154 100401 (2021)

    Article  ADS  Google Scholar 

  18. J W Kang and H J Hwang J Phys Soc Japan 73 1077 (2004)

    Article  ADS  Google Scholar 

  19. Q Mao, M Feng, X Z Jiang, Y Ren, K H Luo and A C T Van Duin Progr. Energy Comb Sci. 97 101084 (2023)

    Article  Google Scholar 

  20. R D Johnson, C S Yannoni, H C Dorn, J R Salem and D S Bethune Science 255 1235 (1992)

    Article  ADS  Google Scholar 

  21. R D Johnson, C S Yannoni and M S de Vries Nanotechnology 3 164 (1992)

    Article  ADS  Google Scholar 

  22. R Tycko, G Dabbagh, R M Fleming, R C Haddon, A V Makhija and S M Zahurak Phys. Rev. Lett. 67 14 1886 (1991)

    Article  ADS  Google Scholar 

  23. D Veclani, M Tolazzi and A Melchior Processes 8 642 (2020)

    Article  Google Scholar 

  24. H Prinzbach, A Weiler, P Landenberger, F Wahl, J Wörth, L T Scott, M Gelmont, D Olevano and B V Issendorff Nature 407 60 (2000)

    Article  ADS  Google Scholar 

  25. H W Kroto, J R Heath, S C O’Brien, R F Curl and R E Smalley Nature 318 162 (1985)

    Article  ADS  Google Scholar 

  26. R F Curl and R E Smalley Science 242 1017 (1988)

    Article  ADS  Google Scholar 

  27. H Kroto Science 242 1139 (1988)

    Article  ADS  Google Scholar 

  28. P A Heiney et al. Rev. Lett. 66 2911 (1991)

    Article  ADS  Google Scholar 

  29. W I F David, R M Ibberson, T J S Dennis, J P Hare and K rassides Eurphys. Lett. 18 219 (1992)

    Article  ADS  Google Scholar 

  30. A Dorner-Reisel, U Ritter, J Moje, E Freiberger and P Scharff Diamond Relat. Mater. 126 109036 (2022)

    Article  ADS  Google Scholar 

  31. S Ren, S Yang and Y Zhao Langmuir 20 3601 (2004)

    Article  Google Scholar 

  32. J Lu, J Guan, H Chen, M Li, Z Hua, F Niu and Y Zhang Coatings 12 1824 (2022)

    Article  Google Scholar 

  33. S Dastjerdi and B Akgöz Int. J. Eng. Sci. 142 125 (2019)

    Article  Google Scholar 

  34. M Sharma, C M S Negi and P A Alvi Indian J. Phys. 97 2089 (2023)

    Article  ADS  Google Scholar 

  35. A V Tuchin, L A Bityutskaya and E N Bormontov Eur. Phys. J. D 69 87 (2015)

    Article  ADS  Google Scholar 

  36. M A Bubenchikov, A M Bubenchikov, A V Lun-Fu and V A Ovchinnikov Status Solidi A 218 2000174 (2021)

    Article  ADS  Google Scholar 

  37. A V Lun-Fu, A M Bubenchikov, M A Bubenchikov and V A Ovchinnikov Crystals 12 260 (2022)

    Article  Google Scholar 

  38. A M Bubenchikov, M A Bubenchikov, A V Lun-Fu and V A Ovchinnikov Nanotub. Carb Nanostr. 29 442 (2021)

    Article  Google Scholar 

  39. K Stevens, N Thamwattana and T Tran-Duc J. Appl. Phys. 128 204301 (2020)

    Article  ADS  Google Scholar 

  40. N Thamwattana, D Baowan and J M Hill Jnl Comp. Theo Nano 6 972 (2009)

    Article  Google Scholar 

  41. D V Sivkov et al. Appl. Sci. 11 11646 (2021)

    Article  Google Scholar 

  42. V I Borodin, M A Bybenchikov, A M Bubenchikov and V A Ovchinnikov Russ. Phys. J. 66 232 (2023)

    Article  Google Scholar 

  43. A V Lun-Fu, A M Bubenchikov, M A Bubenchikov, D S Kaparulin and V A Ovchinnikov Meccanica 57 2293 (2022)

    Article  MathSciNet  Google Scholar 

  44. R F Kiefl et al. Rev. Lett. 68 1347 (1992)

    Article  ADS  Google Scholar 

  45. D Zhang, Z Liu, H Yang, R Liang, J Shi and A Liu Indian J Phys. 95 851 (2021)

    Article  ADS  Google Scholar 

  46. R Usubamatov Theory of Gyroscopic Effects for Rotating Objects: Gyroscopic Effects and Applications (Cham : Springer International Publishing) (2022)

  47. D Baowan and J M Hill Adv. Mech. Eng. 8 168781401667702 (2016)

    Article  Google Scholar 

  48. L D Landau and E M Lifshitz Chapter VI - Motion of a rigid body in Mechanics 3rd ed., (Oxford : Butterworth-Heinemann) p 96 (1976)

  49. G Arora, V Joshi and I S Garki Recent advances in mathematics for engineering, 1st edn. (ed.) M Ram (Boca Raton: CRC Press) p 193 (2020)

    Chapter  Google Scholar 

  50. M L Abell and J P Braselton Systems of ordinary differential equations (Elsevier) p 283 (2023)

  51. Y Maniwa, K Mizoguchi, K Kume, K Kikuchi, I Ikemoto, S Suzuki and Y Achiba Solid State Commun. 80 609 (1991)

    Article  ADS  Google Scholar 

  52. J R F Lima, J Brandão, M M Cunha and F Moraes Phys. J. D 68 94 (2014)

    Article  ADS  Google Scholar 

  53. D A Neumann et al. Phys. Rev. Lett. 67 3808 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Russian Science Foundation, Grant No. (21–71-10066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav A. Ovchinnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, V.I., Bubenchikov, M.A., Bubenchikov, A.M. et al. Numerical study of the chiral effect in C60 fullerite. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03215-2

Keywords

Navigation