Skip to main content
Log in

Optimizing tandem solar cells efficiency through current matching technique in lead-free perovskite/c-Si and lead-free perovskite/CIGS absorbers

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Lead halide hybrid solar cells have demonstrated exceptional performance in recent years, but concerns over their toxicity and instability have spurred the development of perovskite-based cells without lead. This work explores a lead-free perovskite material consisting of cesium tin-germanium triiodide solid solution perovskite (CsSn0.5Ge0.5I3) is utilized to fabricate solar cells with varying thicknesses and donor densities of the absorber layer. The results imply that enhancing the thickness of the layer boosts the power conversion efficiency (PCE) by facilitating better photon absorption. However, this increase in thickness also causes a reduction in both the open-circuit voltage (VOC) and fill factor (FF). In other words, while thickening the layer improves PCE through increased photon absorption, it also negatively impacts other key performance metrics, such as VOC and FF. Conversely, the effect of donor density (Nd) on the cell’s performance is less significant than the CsSn0.5Ge0.5I3 layer’s thickness. This study sheds light on the critical role of thickness and donor density in optimizing the performance of CsSn0.5Ge0.5I3-based solar cells. The performance of c-Si and CIGS-based single junction bottom cells under standalone conditions is also analyzed using JV and EQE curves. The C-Si-based single junction solar cell exhibited greater efficiency (21.28%) in converting photons of different wavelengths into electrons compared to the CIGS-based solar cell (16.26%). Lastly, for increasing the PCE of the single-junction solar cells the study moves towards multi-junction solar cells. In this context, two highly efficient TSCs (LFPVK/c-Si and LFPVK/CIGS) are designed and analyzed using the current matching technique, which involves the series connection of the top and bottom cells with increased PV parameters (LFPVK/c-Si-JSC: 21.44 mA/cm2, VOC: 1.45 V, FF: 82.17%, PCE: 25.54% and LFPVK/CIGS-JSC: 21.83 mA/cm2, VOC: 1.33 V, FF: 73.34%, PCE: 21.45%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S Karthick, S Velumani and J Bouclé Solar Energy 205 349 (2020)

    Article  ADS  Google Scholar 

  2. S T Thornton, G Abdelmageed, R F Kahwagi and G I Koleilat J. Chem. Technol. Biotechnol. 97 810 (2022)

    Article  Google Scholar 

  3. C Duan, Z Zhao and L Yuan IEEE J. Photovolt. 11 1126 (2021)

    Article  Google Scholar 

  4. S S Hussain et al J. Renew. Energy 2021 1 (2021)

    Article  Google Scholar 

  5. T Dureja, A Garg, S Bhalla, D Bhutani and A Khanna Mater. Today Proc. 71 239 (2022)

    Article  Google Scholar 

  6. S Rawat, R Gupta, and S Gohri, Mater. Today Proc. (2023)

  7. L Qiu, S He, L K Ono and Y Qi Adv. Energy Mater. 10 1902726 (2020)

    Article  Google Scholar 

  8. T Zhou, M Wang, Z Zang and L Fang Adv. Energy Mater. 9 1900664 (2019)

    Article  Google Scholar 

  9. Y Chu, Y Hu and Z Xiao J. Phys. Chem. C 125 9688 (2021)

    Article  Google Scholar 

  10. M Jošt, L Kegelmann, L Korte and S Albrecht Adv. Energy Mater. 10 1904102 (2020)

    Article  Google Scholar 

  11. J Madan, R Pandey and R Sharma Solar Energy 197 212 (2020)

    Article  ADS  Google Scholar 

  12. A Kumar and P Sharma IEEE Trans. Electron Dev. 69 3462 (2022)

    Article  ADS  Google Scholar 

  13. M Aleksandrova et al Crystals 11 137 (2021)

    Article  Google Scholar 

  14. M Aleksandrova, G Kolev, R Tomov, A Singh, K Mohite and G Dobrikov Bulgar. Chem. Commun. 2020 65 (2020)

    Google Scholar 

  15. K Chakraborty, M G Choudhury and S Paul Solar Energy 194 886 (2019)

    Article  ADS  Google Scholar 

  16. M Kumar, A Raj, A Kumar and A Anshul Opt. Mater. 108 110213 (2020)

    Article  Google Scholar 

  17. A Thakur, D Singh and S K Gill Mater. Today Proc. 71 195 (2022)

    Article  Google Scholar 

  18. J Tong et al Science 364 475 (2019)

    Article  ADS  Google Scholar 

  19. N Singh, A Agarwal and M Agarwal Solar Energy 208 399 (2020)

    Article  ADS  Google Scholar 

  20. N Shrivastav, J Madan, R Pandey and A E Shalan RSC Adv. 11 37366 (2021)

    Article  ADS  Google Scholar 

  21. N Shrivastav et al Energy Fuels 11 37366 (2023)

    Google Scholar 

  22. M Chen et al Nature Commun. 37 3083 (2019)

    Google Scholar 

  23. I Alam and M A Ashraf Energy Sour. Part A Recov. Utilizat. Environ. Effects 15 1 (2020)

    Google Scholar 

  24. J A AbuShama, S Johnston, T Moriarty, G Teeter, K Ramanathan and R Noufi Progress in Photovoltaics: Research and Applications 12 39 (2004)

    Article  Google Scholar 

  25. S Lee et al J. Phys. Chem. C 113 7443 (2009)

    Article  Google Scholar 

  26. L Nkhaili, A Narjis, A Outzourhit, A El Kissani and R El Moznine Adv. Mater. Sci. Eng. 2020 1 (2020)

    Article  Google Scholar 

  27. Z Ren et al Solar Energy Materials and Solar Cells 179 36 (2018)

    Article  Google Scholar 

  28. Y Yao, X Xu, X Zhang, H Zhou, X Gu and S Xiao Materials Science in Semiconductor Processing 77 16 (2018)

    Article  Google Scholar 

  29. S Kirner, L Mazzarella, L Korte, B Stannowski, B Rech and R Schlatmann IEEE J. Photovolt. 5 1601 (2015)

    Article  Google Scholar 

  30. J Dréon et al Nano Energy 70 104495 (2020)

    Article  Google Scholar 

  31. H Shen et al Energy Environ. Sci. 11 394 (2018)

    Article  Google Scholar 

  32. N Shrivastav, S Kashyap, R Pandey, and J Madan, in 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON) pp. 39 (2022)

  33. K A Bush et al ACS Energy Lett. 3 2173 (2018)

    Article  Google Scholar 

  34. L Lin et al Solar Energy 215 328 (2021)

    Article  ADS  Google Scholar 

  35. F Jafarzadeh, H Aghili, H Nikbakht and S Javadpour Solar Energy 236 195 (2022)

    Article  ADS  Google Scholar 

  36. C U Kim et al Nano Energy 60 213 (2019)

    Article  Google Scholar 

  37. E Aydin et al Nature Energy 5 851 (2020)

    Article  ADS  Google Scholar 

  38. A S Subbiah et al ACS Energy Lett. 5 3034 (2020)

    Article  Google Scholar 

  39. N Singh, A Agarwal and M Agarwal Opt. Mater. 114 110964 (2021)

    Article  Google Scholar 

  40. J Madan, K Singh and R Pandey Sci. Rep. 11 19829 (2021)

    Article  ADS  Google Scholar 

  41. K Amri, R Belghouthi, M Aillerie and R Gharbi Energies 14 3383 (2021)

    Article  Google Scholar 

  42. A Kumar, S Singh, M K Mohammed and A E Shalan Europ. J. Inorg. Chem. 2021 4959 (2021)

    Article  Google Scholar 

  43. S Abdelaziz, A Zekry, A Shaker and M Abouelatta Opt. Mater. 123 111893 (2022)

    Article  Google Scholar 

  44. M S Salem, A Shaker, M Abouelatta and A Saeed Polymers 15 784 (2023)

    Article  Google Scholar 

  45. M Okil, A Shaker, I S Ahmed, T M Abdolkader and M S Salem Solar Energy Mater. Solar Cells 253 112210 (2023)

    Article  Google Scholar 

  46. S Gohri, J Madan, R Pandey and R Sharma Opt. Quant. Electron. 55 171 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil Shrivastav, Jaya Madan or Rahul Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastav, N., Madan, J. & Pandey, R. Optimizing tandem solar cells efficiency through current matching technique in lead-free perovskite/c-Si and lead-free perovskite/CIGS absorbers. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03206-3

Keywords

Navigation