Skip to main content
Log in

Quark-hadron deconfinement phase transition and massive hybrid stars

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The stellar configurations of quark stars have been studied using perturbative QCD (pQCD). The effective equation of state (EoS) for cold quark matter from pQCD has been used which goes beyond the MIT bag model description. The neutron star structures with EoS obtained from NRAPR Skyrme interaction have also been explored. The quark-hadron deconfinement phase transition in matter under extreme pressure in stellar interior has been studied using Maxwell construction. The influence of hybrid EoS on the jump in energy density has been investigated. To study hybrid stars, the NRAPR hadronic model and pQCD EoS for the quark phase have been used. The effects of the different parameters of the pQCD model on the structural properties of Quark stars and Hybrid stars have been investigated in light of various recent astrophysical observations. The mass-radius variation of Quark stars, Neutron stars and Hybrid stars with quark matter cores in the context of twin stars and appearance of special points have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W Baade and E Zwicky Phys. Rev. 45 138 (1934)

    Google Scholar 

  2. J R Oppenheimer and G M Volkoff Phys. Rev. 55 374 (1939)

    Article  ADS  Google Scholar 

  3. T Gold Nature 218 731 (1968), ibid 221 25 (1969)

    Article  ADS  Google Scholar 

  4. S L Shapiro and S A Teukolsky Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, WILEY-VCH Verlag GmbH. (2004)

  5. K Norman Glendenning Compact Stars (New York: Springer-Verlag) (1997)

    Google Scholar 

  6. F Weber Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (CRC Press) (1999)

  7. R P Feynman, N Metropolis and E Teller Phys. Rev. 75 1561 (1949)

    Article  ADS  Google Scholar 

  8. G Baym, C Pethick and P Sutherland Astrophys. J. 170 299 (1971)

    Article  ADS  Google Scholar 

  9. G Baym, H A Bethe and C J Pethick Nucl. Phys. A 175 225 (1971)

    Article  ADS  Google Scholar 

  10. G Baym and C Pethick Annu. Rev. Nucl. Sci. 25 27 (1975)

    Article  ADS  Google Scholar 

  11. J M Lattimer and M Prakash Phys. Rep. 442 109 (2007)

    Article  ADS  Google Scholar 

  12. C J Pethick and D G Ravenhall Annu. Rev. Nucl. Part. Sci. 45 429 (1995)

    Article  ADS  Google Scholar 

  13. C J Pethick, D G Ravenhall and C P Lorenz Nucl. Phys. A 584 675 (1995)

    Article  ADS  Google Scholar 

  14. F Douchin and P Haensel Phys. Lett. B 485 107 (2000)

    Article  ADS  Google Scholar 

  15. K Oyamatsu and K Iida Phys. Rev. C 75 015801 (2007)

    Article  ADS  Google Scholar 

  16. C Ducoin, P H Chomaz and F Gulminelli Nucl. Phys. A 789 403 (2007)

    Article  ADS  Google Scholar 

  17. J Xu, L W Chen, B A Li and H R Ma Phys. Rev. C 79 035802 (2009)

    Article  ADS  Google Scholar 

  18. J Xu, L W Chen, B A Li and H R Ma Astrophys. J. 697 1549 (2009)

    Article  ADS  Google Scholar 

  19. L Tsaloukidis, C H Margaritis and C C Moustakidis Phys. Rev. C 99 015803 (2019)

    Article  ADS  Google Scholar 

  20. C Margaritis, P S Koliogiannis, A Kanakis-Pegios and C C Moustakidis Phys. Rev. C 104 025805 (2021)

    Article  ADS  Google Scholar 

  21. S Kubis Phys. Rev. C 70 065804 (2004)

    Article  ADS  Google Scholar 

  22. S Kubis Phys. Rev. C 76 025801 (2007)

    Article  ADS  Google Scholar 

  23. A Worley, P G Krastev and B A Li Astrophys. J. 685 390 (2008)

    Article  ADS  Google Scholar 

  24. C C Moustakidis Phys. Rev. C 86 015801 (2012)

    Article  ADS  Google Scholar 

  25. C J Horowitz and J Piekarewicz Phys. Rev. Lett. 86 5647 (2001)

    Article  ADS  Google Scholar 

  26. J Carriere, C J Horowitz and J Piekarewicz Astrophys. J. 593 463 (2003)

    Article  ADS  Google Scholar 

  27. L S Kisslinger and D Das Modern Phys. Lett. A 36 2130019 (2021)

    Google Scholar 

  28. J Antoniadis et al Science 340 6131 (2013)

    Article  ADS  Google Scholar 

  29. E Fonseca et al Astrophys. J. Lett. 915 L12 (2021)

    Article  ADS  Google Scholar 

  30. I Legred, K Chatziioannou, R Essick, S Han and P Landrya Phys. Rev. D 104 063003 (2021)

    Article  ADS  Google Scholar 

  31. T E Riley et al Astrophys. J. Lett. 918 L27 (2021)

    Article  ADS  Google Scholar 

  32. R W Romani et al Astrophys. J. Lett. 934 L17 (2022)

    Article  ADS  Google Scholar 

  33. L Rezzolla, E R Most and L R Weih Astrophys. J. Lett. 852 L25 (2018)

    Article  ADS  Google Scholar 

  34. A W Steiner, M Prakash, J M Lattimer and P J Ellis Phys. Rep. 411 325 (2005)

    Article  ADS  Google Scholar 

  35. A Kurkela, P Romatschke and A Vuorinen Phys. Rev. D 81 105021 (2010)

    Article  ADS  Google Scholar 

  36. C Ducoin, J Margueron, C Providência and I Vidaña Phys. Rev. C 83 045810 (2011)

    Article  ADS  Google Scholar 

  37. U Kraemmer and A Rebhan Rept. Prog. Phys. 67 351 (2004)

    Article  ADS  Google Scholar 

  38. E S Fraga, A Kurkela and A Vuorinen Astrophys. J. 781 L25 (2014)

    Article  ADS  Google Scholar 

  39. T H R Skyrme Phil. Mag. 1 1043 (1956); ibid Nucl. Phys. 9 615 (1959)

    Article  ADS  Google Scholar 

  40. D Vautherin and D M Brink Phys. Rev. C 3 626 (1972)

    Article  ADS  Google Scholar 

  41. E Chabanat, E Bonche, E Haensel, J Meyer and R Schaeffer Nucl. Phys. A 627 710 (1997)

    Article  ADS  Google Scholar 

  42. P B Demorest, T Pennucci, S M Ransom, M S E Roberts and J W T Hessels Nature 467 1081 (2010)

    Article  ADS  Google Scholar 

  43. R C Tolman Phys. Rev. 55 364 (1939)

    Article  ADS  Google Scholar 

  44. J R Oppenheimer and G M Volkoff Phys. Rev. 55 374 (1939)

    Article  ADS  Google Scholar 

  45. V S Uma Maheswari, D N Basu, J N De and S K Samaddar Nucl. Phys. A 615 516 (1997)

    Article  ADS  Google Scholar 

  46. P R Chowdhury, A Bhattacharyya and D N Basu Phys. Rev. C 81 062801(R) (2010)

    Article  ADS  Google Scholar 

  47. A Mishra, P R Chowdhury and D N Basu Astropart. Phys. 36 42 (2012)

    Article  ADS  Google Scholar 

  48. D N Basu, P R Chowdhury and A Mishra Eur. Phys. J. Plus 129 62 (2014)

    Article  Google Scholar 

  49. L S Kisslinger and D Das Mod. Phys. Lett. A 35 1950353 (2020)

    Article  ADS  Google Scholar 

  50. T Maruyama, S Chiba, H J Schulze and T Tatsumi Phys. Lett. B 659 192 (2008); ibid Phys. Rev. D 76 123015 (2007)

    Article  ADS  Google Scholar 

  51. S Schramm, V Dexheimer and R Negreiros Eur. Phys. J. A 52 14 (2016)

    Article  ADS  Google Scholar 

  52. C H Lenzi and G Lugones Astrophys. J. 759 57 (2012)

    Article  ADS  Google Scholar 

  53. A Bhattacharya, I N Mishustin and W Greiner J. Phys. G 37 025201 (2010)

    Article  ADS  Google Scholar 

  54. R O Gomes, P Char and S Schramm Astrophys. J. 877 139 (2019)

    Article  ADS  Google Scholar 

  55. S Han, M A A Mamun, S Lalit, C Constantinou and M Prakash Phys. Rev. D 100 103022 (2019)

    Article  ADS  Google Scholar 

  56. M Ferreira, R C Pereira and C Providencia Phys. Rev. D 101 123030 (2020)

    Article  ADS  Google Scholar 

  57. T Gorda, O Komoltsev and A Kurkela arXiv:2204.11877v2 (2023)

  58. L Brandes and W Weise arXiv:2312.11937v3 (2024)

  59. M Cierniak and D Blaschke Eur. Phys. J. ST 229 3663 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

D. N. Basu acknowledges support from Science and Engineering Research Board, Department of Science and Technology, Government of India, through Grant No. CRG/2021/007333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Atta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, D., Singh, V. & Basu, D.N. Quark-hadron deconfinement phase transition and massive hybrid stars. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03191-7

Keywords

Navigation