Skip to main content
Log in

Superconductivity due to condensation of dyons

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The dyonic field-effective Lagrangian in the Abelian projection of quantum chromodynamics has been constructed using an Abelian Higgs model with confinement and dual superconductivity. It has been shown that Abelian dyons are formed by the non-Abelian dyons in the process of Abelianization. Euclidean space–time’s partition function has also been calculated using this approach. It has been further demonstrated that massive scalar mode controls the rate of condensation of the perturbation vacuum surrounding a colored source and other massive vector mode controls the colored flux’s penetration length, both for dyonically condensed vacuum state. The boundary condition between type I and type II superconductors is determined. Furthermore, it has been shown that superconductivity becomes the actual confinement method brought out by the dyonic condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B S Rajput, S Kumar, R Swarup and B Singh Int. J. Theor. Phys. 48 1766 (2009)

    Article  Google Scholar 

  2. B. S. Rajput, S. Kumar, Adv. High Energy Phys. 2010, Id713659 (2010)

  3. B.S. Raiput, S. Kumar, Adv. High Energy Phys. 2010, Id 768054 (2011)

  4. S Kumar Int. J. Theor. Phys. 49 512 (2010)

    Article  CAS  Google Scholar 

  5. Y. Nambu, Phys. Rev. D10, 512 (1974); Y. Nambu Phys. Rep. C 23, 1250 (1976)

  6. V.V. Braguta, P.V. Buividovich, M. N Chernodub, Proc. of Science, Lattice, 362 (2013)

  7. G. t’ Hooft, Nucl. Phys. B 138, 1 (1978)

  8. B. S. Rajput, J.M.S Rana, H.C. Chandola, Prog. Theor. Phys. 82, 153 (1989)

  9. J. Garaud, M.N Chernodub, D. E. Kharzev, Phys, Rev. B102 (2020) 184516; J Garaud, M.N. Chernodub, D. E. Kharzev, Universe 8 (12), 657 (2022)

  10. Z. F. Izawa, A. Iwazaki, Phys. Rev. D 23, 3026 (1981); Z. F. Izawa, A. Iwazaki, Phys. Rev. D 2464, 2264 (1981); Z. F. Izawa, A. Iwazaki, Phys. Rev. D 25, 2681 (1982); Z. F. Izawa, A. Iwazaki, Phys. Rev. D 26, 631 (1982)

  11. A Di Giacomo J. High Energy Phys. 208 2021 (2021)

    Google Scholar 

  12. S. M. Chester, L.V Iliesiu. M. Mezei, Silviu S. Pufu, J. High Energy Phys. 157, 2018 (2018)

  13. A Benfenati, A Samoilenka and E Babaev Phys. Rev B 103 144512 (2021)

    Article  ADS  CAS  Google Scholar 

  14. M Barkman, A Samoilenka, A Benfenti and E Babaev Phys. Rev. B 105 224518 (2022)

    Article  ADS  CAS  Google Scholar 

  15. Y M Cho Int. J. Mod. Phys A 29 145013 (2014)

    Article  Google Scholar 

  16. B.S Rajput, S. Kumar, Il Nuovo Cim. 125B ,1499 (2010); B.S Rajput, S. Kumar, Eur. Phys. J. Plus 126, 22 (2011); B.S Rajput, S. Kumar, Int. Journ. Theor. Phys. 50, 2347 (2011)

  17. M C Diamantini, C A Tmgenberger and V M Vonokur Comm. Phys. 4 25 (2021)

    Article  ADS  Google Scholar 

  18. M. Chernodub, Handbook of Nuclear Phys., Springer Nature, Singapore, pp1–42 (2022)

  19. B S Rajput Int. J. Theor. Phys. 56 1007 (2017)

    Article  Google Scholar 

  20. B S Rajput J. Phys. 1 54 (2017)

    Google Scholar 

  21. S M Chester J. High. Energy Phys. 34 2021 (2021)

    Google Scholar 

  22. t’Hooft, G.: Nucl. Phys., B 190, 455 (1981)

  23. Yu Simonov Phys. Usp. 39 313 (1996)

    Article  ADS  Google Scholar 

  24. Alessandro, A. D’. Elia, M. D’.Tagliacozzo, L.:Nucl. Phys. B 774, 168 (2007)

  25. Boyko, P. Yu. Barnyakov, V.G. Ilgenfritz, E. M. Kovalenko, A.V. Martemyano, B.V., M Muller-Preussker, M I Polikarpov and I Veselov Nucl. Phys. B 756 71 (2006)

  26. Bali, G. S. Bornyakov, V. Muller-Preussker, M. Schilling, K.;Phys. Rev. D 54, 2863 (1996)

  27. T Suzuki and T Yotsuyanagi Phys. Rev. D 42 4257 (1990)

    Article  ADS  CAS  Google Scholar 

  28. T Suzuki Nucl. Phys. B 30 176 (1993)

    Article  CAS  Google Scholar 

  29. V Bornyakov and G Schierholz Phys. Lett. B 384 190 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. A Achucarro and T Vachaspati Phys. Rep. 327 427 (2000)

    Article  Google Scholar 

  31. P Forgacs, S Reullion and M S Volkov Nucl. Phys. B 751 390 (2006)

    Article  ADS  Google Scholar 

  32. T Sekido, K I Shiguro, Y Koma, Y Mori and T Suzuki Phys. Rev. D 76 031501 (2007)

    Article  ADS  Google Scholar 

  33. D Diakonov and V Petrov Phys. Rev. D 76 056001 (2007)

    Article  ADS  Google Scholar 

  34. B Julia and A Zee Phys. Rev. D 11 2227 (1975)

    Article  ADS  CAS  Google Scholar 

  35. M K Prasad and C M Sommerfield Phys. Rev. Lett. 35 760 (1975)

    Article  ADS  CAS  Google Scholar 

  36. P Goddard and D I Olive Rep. Prog. Phys. 41 1357 (1978)

    Article  ADS  Google Scholar 

  37. M N Chernodub, V A Goy and A V Molochkov Phys. Rev. Lett. 130 11802 (2023)

    Article  Google Scholar 

  38. M Hasegawa European Phys. Journ. C 82 1040 (2022)

    Article  ADS  CAS  Google Scholar 

  39. B S Rajput and H C Chandola Nuovo Cim 106 509 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Preeti and N.M. would like to thank the Principal, GGDSD College, Chandigarh, for providing facilities to work. Preeti would like to thank CSIR, Govt. of India, for her financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Preeti or Neelu Mahajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preeti, Singh, B. & Mahajan, N. Superconductivity due to condensation of dyons. Indian J Phys 98, 1849–1855 (2024). https://doi.org/10.1007/s12648-023-02910-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02910-w

Keywords

Navigation