Skip to main content
Log in

Turbulent low-Reynolds-number k–ε model effect on buoyancy-driven free convection flow past a vertical cylinder

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The main objective of the present analysis is to characterize the transient buoyancy-motivated free convection turbulent flow and heat transfer characteristic features of an incompressible viscous fluid past a vertical cylinder with low-Reynolds-number (LRN) k–ε turbulence model in a two-dimensional coordinate system numerically. The Reynolds averaged Navier–Stokes equations (RANS) such as continuity, momentum, and energy are considered in terms of cylindrical coordinate system. The extra stress tensors obtained from the RANS model are closed using the eddy diffusive model. The local value of turbulent kinematic viscosity (\({\nu }_{t}\)) is determined by utilizing the kinetic energy \((k)\) and dissipation rate \((\epsilon )\) equations. The resulting system of partial differential equations (PDEs) with high nonlinearity, governing the turbulent boundary layer flow are solved using the implicit Crank–Nicolson technique. The discretized set of dimensionless tridiagonal algebraic equations are simplified by utilizing Thomas algorithm. Also, the simulated results are expressed in terms of graphs to analyse the average velocity, temperature, kinetic energy, dissipation rate, and also average momentum and heat transfer rates for the varying values of turbulent Prandtl (\({Pr}_{t}\)), Grashof \({(Gr}_{t})\) and Reynolds (\({Re}_{t}\)) numbers. It is noted that the average velocity, kinetic energy, dissipation rate of kinetic energy fields suppressed, and temperature field enhanced with increasing \({Re}_{t}\). Also, the rising turbulent Prandtl parameter decreased the average velocity, temperature, turbulent kinetic energy, and dissipation rate profiles. Further, the increasing turbulent Grashof number decreased the kinetic energy and dissipation rate profiles. Further, the obtained results from the present turbulent investigation are compared with the existing results and observed an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(x\) :

Axial coordinate

\(r\) :

Radial axis perpendicular to the cylinder

\({r}_{0}\) :

Radius of the cylinder

\(X\) :

Non-dimensional axial coordinate

\(R\) :

Non-dimensional radial coordinate

\(u, v\) :

Velocity components along \(x\) and \(r\)  paths

\(\overline{u }, \overline{v }\) :

Average velocities along \(x\) and \(r\) directions

\({u}^{^{\prime}}, {v}^{^{\prime}}\) :

Fluctuating velocities along \(x\) and \(r\) directions

\(\overline{{u }^{^{\prime}}{v}^{^{\prime}}}\) :

Shear stress of the turbulent flow

\(\overline{{u }{^{\prime}}{\theta }{^{\prime}}}\) :

Longitudinal turbulent heat flux

\(\overline{{v }{^{\prime}}{\theta }{^{\prime}}}\) :

Transverse turbulent heat flux

\({\tau }_{w}\) :

Wall shear stress of turbulent flow

\(U, V\) :

Dimensionless velocities in \(X\) and \(R\) directions

\({\theta }{^{\prime}}\) :

Fluctuating temperature

\(\overline{\theta }\) :

Average thermal filed

\(T\) :

Dimensionless temperature

\({t}{^{\prime}}\) :

Dimensional time

\(t\) :

Non-dimensional time

\(g\) :

Acceleration due to gravity

\({Gr}_{t}\) :

Turbulent thermal Grashof parameter

\({Pr}_{t}\) :

Turbulent Prandtl number

\(Pr\) :

Laminar Prandtl number

\({C}_{1}, {C}_{2}\) :

Empirical constants

\({C}_{k}\) :

Arbitrary Prandtl number-dependent coefficient

\({f}_{1, }{ f}_{2}, {f}_{\mu }\) :

Near wall treatment functions

\(k\) :

Average turbulence energy

\(\epsilon\) :

Average dissipation rate

\(K\) :

Dimensionless kinetic energy

\(E\) :

Dimensionless dissipation rate

\({Re}_{t}\) :

Reynolds number

\({C}_{\mu }\) :

Proportional constant

\({K}_{T}\) :

Thermal conductivity

\({\overline{u} }_{\infty }\) :

Free stream velocity

\({\alpha }_{t}\) :

Turbulent heat diffusivity

\({\sigma }_{T}, {\sigma }_{k}\) :

Turbulent Prandtl numbers for \(\overline{\theta }\) and \(k\)

\({\sigma }_{\epsilon }\) :

Dissipation Prandtl number

\(\mu\) :

Laminar flow's viscosity

\({{\mu }_{t} }\) :

Turbulent flow's viscosity

\(\nu , {\nu }_{t}\) :

Laminar and turbulent kinematic viscosities, respectively

\(\rho\) :

Density

\(a, b\) :

Grid levels, respectively, in the directions of \(X \& R\)

\(w\) :

Surface condition

\(\infty\) :

Free stream condition

\(c\) :

Time step level

References

  1. Y A Cengel Introduction to thermodynamics and heat transfer (New York: McGraw-Hill) (1997)

    Google Scholar 

  2. Y A Cengel and J M Cimbala Fluid Mechanics: Fundamentals and Applications (New York: McGraw-Hill) (2004)

    Google Scholar 

  3. W Khan, J Culham and M Yovanovich J. heat transfer 127 785 (2005)

    Article  Google Scholar 

  4. R Arturo, O Richard, Adansi, E Andres, H Noshin, I Naomi, O Gerardo, D L Norman and K Vinod, DOI: https://doi.org/10.13140/RG.2.2.14890.13767 (2021)

  5. P Ganesan and H P Rani Heat mass transfer 33 449 (1998)

    Article  ADS  Google Scholar 

  6. H P Rani and C N Kim Korean J. Chem. Eng. 25 34 (2008)

    Article  Google Scholar 

  7.  H P Rani, G J Reddy and C N Kim Acta Mech. Sin.  29 649 (2013)

    Google Scholar 

  8. V Rajesh, O Anwar Beg and C Sridevi J. Appl. Fluid Mech. 9 157 (2016)

    Article  Google Scholar 

  9. P Loganathan and M Divya Indian J. Pure Appl. Phys. 56 551 (2018)

    Google Scholar 

  10.  S P Suresha, B Hussain and G J Reddy Nonlinear engineering 10 343 (2021)

    Article  ADS  Google Scholar 

  11. P Ashish, Heat Transfer (DOI: https://doi.org/10.1002/htj.22612) (2022) (Article in press)

  12. W P Jones and B E Launder Int. J. Heat Mass Transfer. 15 301 (1972)

    Article  Google Scholar 

  13. W P Jones and B E Launder Int. J. Heat Mass Transfer. 16 1119 (1973)

    Article  Google Scholar 

  14. S J Lin and S W Churchill Numer. Heat Transf. B: Fundam. 1 129 (1978)

    Article  ADS  Google Scholar 

  15. S Fan B Lakshminarayana and M Barnett AIAA 31 1777 (1993)

    Google Scholar 

  16. A G Fedorov and R Viskanta Int. J. Heat Mass Transfer. 40 3849 (1997)

    Article  Google Scholar 

  17. A G Fedorov, R Viskanta and A A Mohamad Int. J. Heat Fluid Flow 18 307 (1977)

    Article  Google Scholar 

  18. J M Jalil, T K Murtadha and K A A Taey Engineering journal of the University of Qatar 19 1 (2006)

    Google Scholar 

  19. D Kuzmin O Mierka and S Turek IJCSM 1 1 (2007)

    Google Scholar 

  20. E Fedorovich and A Shapiro J. Fluid Mech. 636 41 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. S K Rathore and M K Das Int. J. Heat Mass Transfer. 61 365 (2013)

    Article  Google Scholar 

  22. S K Rathore and M K Das Int. J. Therm. Sci. 89 337 (2015)

    Article  Google Scholar 

  23. S K Rathore and M K Das Int. J. Heat Mass Transfer. 95 636 (2016)

    Article  Google Scholar 

  24. V M Behera and S K Rathore Materials science and engineering 1146 1 (2019)

    Google Scholar 

  25. S K Rathore J. Appl. Fluid Mech. 12 617 (2019)

    Article  Google Scholar 

  26. V M Behera and S K Rathore J. Therm. Sci. Eng. Appl. 13 1 (2021)

    Article  Google Scholar 

  27. S W Churchill and H H S Chu Int. J. Heat Mass Transfer. 18 1049 (1975)

    Article  ADS  Google Scholar 

  28. T Saitoh, T Sajiki and K Maruhara J. Heat Mass Transfer. 36 1251 (1993)

    Article  Google Scholar 

  29.  M A Atmane, V S S Chan and D B Murray J. Heat Mass Transfer. 46 3661 (2003)

    Article  Google Scholar 

  30. M Ashjaee and T Yousefi Heat Transfer Eng. 28 460 (2007)

    Article  ADS  Google Scholar 

  31. J Linejad and J A Esfahani J. Thermophys Heat Transfer. 30 94 (2016).

    Article  Google Scholar 

  32.  J R Senapati, S K Dash and S Roy J. Therm. Sci. 111 146 (2017)

    Article  Google Scholar 

  33. S Rath and S K Dash Int. J. Therm. Sci. 1 106 (2019).

    Google Scholar 

  34. S Acharya and S K Dash Therm. Sci. Eng. Prog. 15 100449 (2019)

    Article  Google Scholar 

  35. M K Dash and S K Dash J Thermophys Heat Trans. (2020) (Article in press)

  36. T Anvesh and R Harish IJRTE 9 2783 (2020)

    Article  Google Scholar 

  37. F Eker and I Yimaz Int. J. Energy Std. 6 95 (2021)

    Google Scholar 

  38. T S Salesky, M Calaf and W Anderson J. Fluid Mech. 934, (2022)

  39. J H Christopher, S N Chong, V Roberto and L Detlef J. Fluid Mech. 930 32 (2022)

    Article  Google Scholar 

  40. X Nie, Z H Zhu, H B Liao, Y Z Zhang and J R Xu  J. Appl. Fluid Mech. 15 85 (2022)

    Google Scholar 

  41. C Eyub, A Ali and B Şefik Afyon kocatepe university journal of sciences and engineering 20 1096 (2020)

    Article  Google Scholar 

  42. B E Launder and D B Spalding Comput. Methods Appl. Mech. Eng. 3 269 (1974)

    Article  ADS  Google Scholar 

  43. J Happel and H Brenner Low Reynolds number hydrodynamics: with special applications to particulate media (Netherlands: Martinus Nijhoff Publishers)) (2012)

    Google Scholar 

  44. H P Rani, G J Reddy and C N Kim Appl. Comput. Fluid Mech. 5 159 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Janardhana Reddy.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresha, S.P., Reddy, G.J. & Basha, H. Turbulent low-Reynolds-number k–ε model effect on buoyancy-driven free convection flow past a vertical cylinder. Indian J Phys 98, 659–677 (2024). https://doi.org/10.1007/s12648-023-02797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02797-7

Keywords

Navigation