Skip to main content
Log in

THz wave manipulation via multiple bias circuits based on combined graphene patterns

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work presents a multi-variable biases device based on combined graphene patterns. The periodic arrays of graphene disks and ribbons are exploited to realize a THz absorber that is capable of acting in the whole THz spectrum as a superwave absorber. The presented device is modeled by an equivalent circuit model and the device reaction against THz radiation is verified by full-wave simulation. According to simulation results, the proposed device can show reliable response including dual-narrow bands absorption. Also, corresponding reflections can be considered as a separate output channel that shows the filtering function of the device. The details of circuit modeling are discussed while ample simulations regarding device sensitivity versus design parameters are reported. This kind of graphene-based device can be used to build several optical systems such as radars which has attractive potential in medical imaging, security, and indoor communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data and materials availability

The datasets and figures used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S Barzegar-Parizi, B Rejaei and A Khavasi IEEE J Quantum Electron 51 1 (2015)

    Article  Google Scholar 

  2. I Chaharmahali, S Biabanifard and M Mosleh Optik 227 165596 (2020)

    Article  ADS  Google Scholar 

  3. M Soltani, A Najafi and I Chaharmahali J Comput Electron 19 1 (2020)

    Article  Google Scholar 

  4. A Najafi, M Soltani, I Chaharmahali and S Biabanifard Optik 203 163924 (2020)

    Article  ADS  Google Scholar 

  5. K Jafari-Jozani, M Abbasi, T Asiyabi, M Biabanifard and S Biabanifard Optik 198 163248 (2019)

    Article  ADS  Google Scholar 

  6. M Soltani-Zanjani, I Chaharmahali, S Biabanifard and S E Hosseini Optik 191 22 (2019)

    Article  ADS  Google Scholar 

  7. M Biabanifard, S Asgari, S Biabanifard and M S Abrishamian Optik 182 433 (2019)

    Article  ADS  Google Scholar 

  8. S Biabanifard, M Biabanifard, S Asgari, S H Asadi and E Mustapha Opt Commun 427 418 (2018)

    Article  ADS  Google Scholar 

  9. S Biabanifard Optik 172 1026 (2018)

    Article  Google Scholar 

  10. S Biabanifard Sadegh J Comput Electron 20 38 (2020)

    Article  Google Scholar 

  11. M Soltani-Zanjani, S Biabanifard, S Hemmatiyengejeh, M Soltani and H Sadrnia Res Phys 25 104326 (2021)

    Google Scholar 

  12. S Cyrus Biabanifard Heliyon 7 e07633 (2021)

    Article  Google Scholar 

  13. T Aghaee and A A Orouji Int J Numer Modell: Electron Netw Devices Fields 33 e2777 (2020)

    Article  Google Scholar 

  14. T Aghaee and A A Orouji J Comput Electron 20 611 (2021)

    Article  Google Scholar 

  15. T Aghaee and A A Orouji Devices Fields 33 e2586 (2020)

    Google Scholar 

  16. T Aghaee and A A Orouji Res Phys 16 102855 (2020)

    Google Scholar 

  17. A A M Khani, T Aghaee, J Mazloum and M Jamali COMPEL-Int J Comput Math Electr Electron Eng 41 1865 (2022)

    Article  Google Scholar 

  18. I Rezaei, A A M Khani, S Biabanifard and M Soltani-Zanjani Opt Laser Technol 151 107996 (2022)

    Article  Google Scholar 

  19. M Alagheband, S Rahmani and M Alizadeh A Karimi Artery Research 10 11 (2015)

    Article  Google Scholar 

  20. S Rahmani, M Alagheband and A Karimi J Med Eng Technol 39 4 239 (2015)

    Article  Google Scholar 

  21. M S Islam, J Sultana, M Biabanifard, Z Vafapour, M J Nine, A Dinovitser, C M B Cordeiro and BW-H Ng D Abbott Carbon 158 559 (2020)

    Article  Google Scholar 

  22. E Rezagholizadeh and M Biabanifard Borzooei J Phys D: Appl Phys 53 29 295107 (2020)

    Article  Google Scholar 

  23. M Biabanifard and M S Abrishamian AEU-Int J Electron Commun 95 256 (2018)

    Article  Google Scholar 

  24. M Biabanifard and M S Abrishamian Optik Int J Light Electron Opt 95 256 (2017)

    Google Scholar 

  25. A Arsanjani and M Biabanifard Superlattices and Microstruct 128 157 (2019)

    Article  ADS  Google Scholar 

  26. F Tabatabaei, M Biabanifard and M S Abrishamian Optik 180 526 (2019)

    Article  ADS  Google Scholar 

  27. M Biabanifard AppL Phys A 124 1 (2018)

    Article  Google Scholar 

  28. M Biabanifard and A Arsanjani Abbott IEEE Access 8 70343 (2020)

    Article  Google Scholar 

  29. I Chaharmahali, M Soltani and M Hoseini Opt Eng 59 4 047101 (2020)

    Article  ADS  Google Scholar 

  30. T Aghaee and A A Orouji Microw Opt Technol Lett 63 2769 (2021)

    Article  Google Scholar 

  31. I Rezaei and A Salmanpour Aghaee Memories-Mater, Devices, Circuit Syst 4 100039 (2023)

    Article  Google Scholar 

  32. M Biabanifard, S Biabanifard, S Javad Hosseini and A Jahanshiri Eng Technol 2 555585 (2018)

    Google Scholar 

  33. D Cheng Field and wave electromagnetics (India: Pearson Education India) (1989)

    Google Scholar 

  34. Q Limei, C H Liu and S M A Shah Carbon 153 179 (2019)

    Article  Google Scholar 

  35. B X Wang, Y He, P Lou and W Xing Nanoscale Adv 2 763 (2020)

    Article  ADS  Google Scholar 

  36. Y Cai, Y Guo, Y Zhou, X Huang, G Yang and J Zhu Opt Express 28 31524 (2020)

    Article  ADS  Google Scholar 

  37. P Wu, Z Chen, D Xu, C Zhang and R Jian Micromachines 11 58 (2020)

    Article  Google Scholar 

  38. S Barzegar-Parizi and A Khavasi IEEE J Quantum Electron 55 1 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toktam Aghaee.

Ethics declarations

Conflict of interests

Not applicable.

Ethical approval

Not applicable.

Consent for publication

The authors, the undersigned, give their consent for the publication of this manuscript to be published in Journal of Computational Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirjani, S., Salmanpour, A., Rezaei, I. et al. THz wave manipulation via multiple bias circuits based on combined graphene patterns. Indian J Phys 98, 339–348 (2024). https://doi.org/10.1007/s12648-023-02789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02789-7

Keywords

Navigation