Skip to main content
Log in

Theoretical electronic and optical properties of AlGaAsN/GaAs quantum well using 10 band kp approach

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Based upon the 10-band kp approach, the electronic properties, namely the electronic band structure, effective mass, band offset, their ratio, and optical gain of AlGaAsN/GaAs, have been studied. An extensive range of electronic bandgaps spanning from 0.866 eV and 0.942 eV are observed. Considering strain, 16.7 meV/N% (keep 2%Al) splitting rates were observed due to the compressive strain. While under tensile strain, we observed a changeover from type II to type I heterostructure with a valence band offset ratio (Qv) of 0.21 < 1, which is the definition for type I heterostructure. However, a conduction band offset ratio (Qc) of 0.795, a higher value, is advantageous as it establishes better electron confinement. It is shown that (x = 0.05, y = 0.04) is the more suitable couple of contents for developing \({\mathrm{Al}}_{x}{\mathrm{Ga}}_{1-x}{\mathrm{As}}_{1-y}{\mathrm{N}}_{y}/\mathrm{GaAs}\) single quantum well compounds are emitting in the telecommunications windows range. Increasing nitrogen concentration and an active region's dimension leads to a red shift in the gain spectra. While under the influence of compressive and tensile strain, lateral variation by 214 nm is observed in the optical gain spectra. We also studied the variation of threshold current density with a density of injected carriers. These findings may help future optical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D N Talwar Appl. Phys. Lett. 99 123505 (2006)

    Google Scholar 

  2. Walid Filali et al Superlattices and Microstructures 111 1010 (2017)

    Article  ADS  Google Scholar 

  3. K Yamamoto, M Uchida, A Yamamoto, A Masuda and A Hashimoto Phys. Stat. Sol (b) 234 915 (2002)

    Article  ADS  Google Scholar 

  4. M Grodzicki et al Vacuum 189 110240 (2021)

    Article  ADS  Google Scholar 

  5. W Shan, W Walukiewicz, J W Ager III, E E Haller, J F Geisz, D J Friedman, J M Olson and S R Kurtz Phys. Rev. Lett. 82 1221 (1999)

    Article  ADS  Google Scholar 

  6. G Kolhatkar et al Journal of Applied Physics 115 163513 (2014)

    Article  ADS  Google Scholar 

  7. W Shan, K M Yu, W Walukiewicz, J W Ager III and E E Haller M. C. Ridgway Appl. Phy. Lett. 75 1410 (1999)

    Article  ADS  Google Scholar 

  8. L Ma, X Zhang, H Li et al Semiconductor Science Technology 30 105033 (2015)

    Article  ADS  Google Scholar 

  9. T S Moss, G J Burrell and B Ellis Semiconductor Opto-Electronics (London: Butterworths) (1973)

    Google Scholar 

  10. M Kondow Semicond. Sci. Technol. 17 746 (2002)

    Article  ADS  Google Scholar 

  11. I Vurgaftman and J N Meyer J. Appl. Phys. 94 3675 (2003)

    Article  ADS  Google Scholar 

  12. Tarek Hidouri et al Optik 205 164253 (2020)

    Article  ADS  Google Scholar 

  13. M Aslan and B G Yalçın J. Alloys Compd. 519 55 (2012)

    Article  Google Scholar 

  14. W Bellil et al Optik—International Journal for Light and Electron Optics 171 803 (2018)

    Article  Google Scholar 

  15. K Alberi et al Phys. Rev. B 75 045203 (2007)

    Article  ADS  Google Scholar 

  16. M Gladysiewicz et al Journal of Applied Physics 113 063514 (2013)

    Article  ADS  Google Scholar 

  17. A Sharma J. Electron. Mater. 49 6263 (2020)

    Article  ADS  Google Scholar 

  18. K M Yu, W Walukiewicz, J Wu, J W Beeman and J W Ager III Appl. Phys. Lett. 90 2227 (2001)

    Google Scholar 

  19. S Nacer and A Aissat Ferdjani Opt. Quant Electron 40 677 (2008)

    Article  Google Scholar 

  20. A Sharma et al Bull. Mater. Sci. 42 87 (2019)

    Article  Google Scholar 

  21. A Sharma et al Mater. Sci. Semicond. Process. 109 104947 (2020)

    Article  Google Scholar 

  22. A Sharma et al Material Today Proceeding 47 612 (2021)

    Article  Google Scholar 

  23. A Sharma et al Optical Material 112 110734 (2021)

    Article  Google Scholar 

  24. N Tansu and J-Y Yeh Phys. Lett. 82 3008 (2003)

    Google Scholar 

  25. W W Chow and S W Koch Semiconductor-Laser Fundamentals: Physics of the Gain Materials (New York: Springer) (1999)

    Book  Google Scholar 

  26. I Vurgaftman, J R Meyer and L R Ram-Mohan J. Appl. Phys. 89 5815 (2001)

    Article  ADS  Google Scholar 

  27. S M Sze and K K Ng Physics of Semiconductor Devices, 3rd edn. (New York: Wiley) (2007)

    Google Scholar 

  28. I Mal et al Superlattice. Microst. 109 442 (2017)

    Article  ADS  Google Scholar 

  29. J Wu, W Walukiewicz, K M Yu, J W Ager III, S X Li and E E Haller Solid State Commun. 127 411 (2003)

    Article  ADS  Google Scholar 

  30. C Skierbiszewski et al. J. Appl. Phys. 76 2409 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Sharma.

Ethics declarations

Conflict of interest

The author declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Gupta, G. & Bhattarai, S. Theoretical electronic and optical properties of AlGaAsN/GaAs quantum well using 10 band kp approach. Indian J Phys 98, 127–137 (2024). https://doi.org/10.1007/s12648-023-02786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02786-w

Keywords

Navigation