Skip to main content
Log in

First-principle calculations to investigate the structural, elastic, electronic and thermodynamic properties of the multiferroic material YMnS3

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, elastic, electronic and thermodynamic properties of multiferroic ternary sulfide perovskite YMnS3 were predicted by using the density functional theory plus Hubbard correction through the full-potential linearized augmented plane-wave (PF-LAPW) method. The exchange–correlation potential was treated by using the generalized gradient approximation (GGA) for solids and (GGA + U). The study of the structural properties, thermodynamic stability and mechanical stability shows that the perovskite YMnS3 is stable in cubic phase. The brittleness and ductility are also studied by the analysis of the elastic constants with the other mechanical parameters. As a result, the obtained findings show that the YMnS3 is a ductile material. Moreover, the electronic band structure is strongly affected by the presence of the Hubbard correction where we have observed a phase transition from metallic character to half-metallic ferromagnetic character for a critical value of U = 3 eV; for U greater than this value, the YMnS3 material present a half-metallic ferromagnetic behavior with a total magnetic moment around 4.02 μB. Besides, the half-metallic band gap is increased with rising the value of U. Finally, we investigated the influence of pressure and temperature on the lattice parameters, heat capacities, Debye temperatures and the entropies through the quasi-harmonic Debye model. Our results are based on the electronic and magnetic properties of YMnS3 material, which indicate their potential for use in data storage and thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C N R Rao and A Sundaresan J. Phys. Chem. Lett. 3 2237 (2012)

    Article  Google Scholar 

  2. N A Hill J. Phys. Chem. B 104 6694 (2000)

    Article  Google Scholar 

  3. N A Spaldin and R Ramesh Nature Mater. 18 203 (2019)

    Article  Google Scholar 

  4. M M Vopson Critical Rev. Solid State Mater. Sci. 40 223 (2015)

    Article  ADS  Google Scholar 

  5. D V Karpinsky et al. Nanomaterials 10 801 (2020)

    Article  Google Scholar 

  6. S V Trukhanov et al. Ceram. Int. 44 17 21295–21302 (2018)

    Article  Google Scholar 

  7. D V Karpinsky et al. Npj. Comput. Mater. 3 20 (2017)

    Article  ADS  Google Scholar 

  8. A V Trukhanov et al. J. Magn. Magn. Mater. 393 253 (2015)

    Article  ADS  Google Scholar 

  9. A V Trukhanov et al. J. Alloys Compnd. 754 247 (2018)

    Article  Google Scholar 

  10. S V Trukhanov et al. Ceram. Int. 44 1 290–300 (2018)

    Article  Google Scholar 

  11. O S Yakovenko et al. J. Mater. Sci. 52 5345 (2017)

    Article  ADS  Google Scholar 

  12. M M Salem et al. Compos. Part B Eng. 174 107054 (2019)

    Article  Google Scholar 

  13. M Almessiere, Y Slimani, H Güngüneş, A Baykal, S V Trukhanov and A V Trukhanov Nanomaterials 9 24 (2018)

    Article  Google Scholar 

  14. M A Almessiere et al. Nanomaterials 9 202 (2019)

    Article  Google Scholar 

  15. K Dukenbayev et al. Nanomaterials 9 494 (2019)

    Article  Google Scholar 

  16. L Y Matzui et al. Nanomaterials. 9 12 1720 (2019)

    Article  Google Scholar 

  17. M A Darwish et al. Nanomaterials 10 492 (2020)

    Article  Google Scholar 

  18. P Guan and M Zheng Coatings 12 1110 (2022)

    Article  Google Scholar 

  19. S M Selbach, T Tybell and M-A Einarsrud Mater. 20 3692 (2008)

    Google Scholar 

  20. G Catalan and J F Scott Adv. Mater. 21 2463 (2009)

    Article  Google Scholar 

  21. Y P Wang, G L Yuan, X Y Chen and J-M Liu J. Phys. D: Appl. Phys. 39 2019 (2006)

    Article  ADS  Google Scholar 

  22. D V Karpinsky et al. J Phys. Chem. Solids 126 164 (2019)

    Article  ADS  Google Scholar 

  23. D Wang, G Wang, S Murakami, Z Fan, A Feteira, D Zhou, S Sun and Q Zhao J. Adv. Dielect. 08 1830004 (2018)

    Article  Google Scholar 

  24. A N Morozovska, E A Eliseev, M D Glinchuk, O M Fesenko, V V Shvartsman, V Gopalan and M V Silibin Rev. B 97 134115 (2018)

    Article  Google Scholar 

  25. V A Khomchenko and D V Karpinsky J. Mater. Chem. C 5 3623 (2017)

    Article  Google Scholar 

  26. M Nomoto, T Inoshita, Y Inoue, Y Horibe and Y Koyama MRS Adv. 1 573 (2016)

    Article  Google Scholar 

  27. T Shimada, J Wang, T Ueda, Y Uratani, K Arisue, M Mrovec, C Elsässer and T Kitamura Nano Lett. 15 27 (2015)

    Article  ADS  Google Scholar 

  28. D V Karpinsky et al. Sci. Rep. 9 1 10417 (2019)

    Article  ADS  Google Scholar 

  29. T Dippong, E A Levei, O Cadar, I G Deac, L Diamandescu and L Barbu-Tudoran J. Alloys Compnd. 786 330 (2019)

    Article  Google Scholar 

  30. D Arnold IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 62 62 (2015)

    Article  Google Scholar 

  31. D V Karpinsky, I O Troyanchuk, M Tovar, V Sikolenko, V Efimov, E Efimova and V Ya Shur J. Am. Ceram. Soc. 97 2631 (2014)

    Article  Google Scholar 

  32. Y Liu, H Sun, F Liao, G Li, C Zhao, C Cui, J Mei and Y Zhao ACS Omega 6 34485 (2021)

    Article  Google Scholar 

  33. J Heo, L Yu, E Altschul, B E Waters, J F Wager and A Zunger Mater. 29 2594 (2017)

    Google Scholar 

  34. S Perera et al. Nano Energy 22 129 (2016)

    Article  Google Scholar 

  35. L Hasni, M Ameri, D Bensaid, I Ameri, S Mesbah, Y Al-Douri and J Coutinho J. Supercond. Nov. Magn. 30 3471 (2017)

    Article  Google Scholar 

  36. Y Al-Douri, M Ameri and A Bouhemadou Status Solidi B 256 1900131 (2019)

    Article  ADS  Google Scholar 

  37. M Zhuang, W Zhang and C Hu Rev. B 57 10710 (1998)

    Article  Google Scholar 

  38. K-W Lee and W E Pickett Phys. Rev. B 70 165109 (2004)

    Article  ADS  Google Scholar 

  39. B Fadila, M Ameri, D Bensaid, M Noureddine, I Ameri, S Mesbah and Y Al-Douri J. Magn. Magn. Mater. 448 208 (2018)

    Article  ADS  Google Scholar 

  40. A Saim et al. J. Electron. Mater. 51 4014 (2022)

    Article  ADS  Google Scholar 

  41. K Boudiaf, A Bouhemadou, Y Al-Douri, R Khenata, S Bin-Omran and N Guechi J. Alloys Compd. 759 32 (2018)

    Article  Google Scholar 

  42. Y Rached, M Caid, M Merabet, S Benalia, H Rached, L Djoudi, M Mokhtari and D Rached Int. J. Quantum Chem. 122 9 e26875 (2022)

    Article  Google Scholar 

  43. Y Rached, M Caid, H Rached, M Merabet, S Benalia, S Al-Qaisi, L Djoudi and D Rached J. Supercond. Nov. Magn. 35 875 (2022)

    Article  Google Scholar 

  44. I E Yahiaoui, A Lazreg, Z Dridi, Y Al-douri and B Bouhafs Bull Mater Sci 41 2 (2018)

    Article  Google Scholar 

  45. B Asma, F Belkharroubi, A Ibrahim, B Lamia, A Mohammed, W Belkilali, S Azzi and Y Al-Douri Emergent Mater. 4 1769 (2021)

    Article  Google Scholar 

  46. A Mentefa, F Z Boufadi, M Ameri, F Gaid, L Bellagoun, A A Odeh and Y Al-Douri J. Supercond. Nov. Magn. 34 269 (2021)

    Article  Google Scholar 

  47. D Amari, M Mokhtari, F Dahmane and G Benabdellah Emergent Mater. 6 2994 (2023)

    Article  Google Scholar 

  48. M Lazizi, M Mokhtari, F Dahmane, M Mahfoud, G Benabdellah, F S Maddouri, R Khanata, and N Zekri, Indian J. Phys. (2023)

  49. H Wu, R Lu, W Tan, C Xiao, K Deng and Y Qian Solid State Commun. 152 288 (2012)

    Article  ADS  Google Scholar 

  50. W Kohn and A D Becke J. Phys. Chem. 100 12974 (1996)

    Article  Google Scholar 

  51. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R.Laskowski, F. Tran, and L. D. Marks WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties ((Karlheinz Schwarz, Techn. Universität Wien, Austria) http://susi.theochem.tuwien.ac.at/ , ) (2018)

  52. J C Slater Energy Band Calculations by the Augmented Plane Wave Method (Elsevier) p 35 (1964)

  53. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin and X Zhou Rev. Lett. 100 136406 (2008)

    Article  ADS  Google Scholar 

  54. J P Perdew and K Burke Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  55. V I Anisimov and J Zaanen Rev. B 44 943 (1991)

    Article  Google Scholar 

  56. S A Tolba, K M Gameel, B A Ali, H A Almossalami, and N K Allam The DFT+U: Approaches, Accuracy, and Applications (ed) G Yang, (InTech) (2018)

  57. P Blaha, K Schwarz, F Tran, R Laskowski and G K H Madsen J. Chem. Phys. 152 074101 (2020)

    Article  ADS  Google Scholar 

  58. P Giannozzi et al. J. Phys. Condens. Matter. 29 46 465901 (2017)

    Article  Google Scholar 

  59. P Giannozzi et al. J. Phys. Condens. Matter 21 395502 (2009)

    Article  Google Scholar 

  60. A Otero-de-la-Roza and V Luaña Comput. Phys. Commun. 182 1708 (2011)

    Article  ADS  Google Scholar 

  61. A Otero-de-la-Roza, D Abbasi-Pérez and V Luaña Comput. Phys. Commun. 182 2232 (2011)

    Article  ADS  Google Scholar 

  62. F D Murnaghan Proc. Natl. Acad. Sci. 30 244 (1944)

    Article  ADS  Google Scholar 

  63. C Ricca, I Timrov, M Cococcioni and N Marzari Rev. B 99 094102 (2019)

    Article  Google Scholar 

  64. I Timrov and N Marzari Rev. B 98 085127 (2018)

    Article  Google Scholar 

  65. M Cococcioni and S de Gironcoli Phys. Rev. B 71 035105 (2005)

    Article  ADS  Google Scholar 

  66. J Hong, A Stroppa, J Íñiguez and S Picozzi Rev. B 85 054417 (2012)

    Article  Google Scholar 

  67. P. Blaha, K. Schwarz and J. Luitz How to calculate atomization and cohesive energies?. http://www.wien2k.at/reg_user/faq/cohesive_energies.html n.d

  68. M Jamal, S J Asadabadi, I Ahmad and H R Aliabad Comput. Mater. Sci. 95 592 (2014)

    Article  Google Scholar 

  69. M Jamal, M Bilal, I Ahmad and S Jalali-Asadabadi J. Alloys Compd. 735 569 (2018)

    Article  Google Scholar 

  70. W Voigt Lehrbuch der Kristallphysik (Wiesbaden : Vieweg+Teubner Verlag) (1966)

  71. A Reuss Z. Angew. Math. Mech. 9 49 (1929)

    Article  Google Scholar 

  72. R Hill Proc. Phys. Soc. A 65 349 (1952)

    Article  ADS  Google Scholar 

  73. M Born Math. Proc. Camb. Phil. Soc. 36 160 (1940)

    Article  ADS  Google Scholar 

  74. J Wang, J Li, S Yip, D Wolf and S Phillpot Phys. A Stat. Mech. Appl. 240 396 (1997)

    Article  Google Scholar 

  75. F Mouhat and F-X Coudert Phys. Rev. B 90 224104 (2014)

    Article  ADS  Google Scholar 

  76. J R Christman Fundamentals of solid state physics (New York: Wiley) (1988)

  77. I N Frantsevich, F F Voronov, and S A Bokuta Elastic constants and elastic moduli of metals and insulators handbook. (Naukuva Dumka, Kiev, 1983) (1983)

  78. S F Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 823 (1954)

    Article  Google Scholar 

  79. J Haines and J Léger Rev. Mater. Res. 31 1 (2001)

    Article  ADS  Google Scholar 

  80. N Mehtougui, F Bendahma, Y Rached, M Mana, D Rached, M Caid, A Boukortt and Y Ghalem Comput. Condens. Matter. 32 e00730 (2022)

    Article  Google Scholar 

  81. R A de Groot Phys. B Condens. Matter. 172 45 (1991)

    Article  ADS  Google Scholar 

  82. M Ayad et al. Indian J. Phys. 94 7674 (2020)

    Article  Google Scholar 

  83. L Samia, F Belkharroubi, A Ibrahim, B F Lamia, A Saim, A Maizia, A Mohammed and Y Al-Douri Emergent Mater. 5 537 (2022)

    Article  Google Scholar 

  84. S Karkour, A Bouhemadou, D Allali, K Haddadi, S Bin-Omran, R Khenata and Y Al-Douri Phys. J. B 95 38 (2022)

    ADS  Google Scholar 

  85. K Radja, B L Farah, A Ibrahim, D Lamia, I Fatima, B Nabil, A Mohamed, Y Al-Douri and A F A El-Rehim J. Phys. Chem. Solids 167 110795 (2022)

    Article  Google Scholar 

  86. P Debye Annalen. Der Phys. 344 789 (1912)

    Article  ADS  Google Scholar 

  87. R Fox Brit. J. Hist. Sci 4 1 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Outayeb or Ghlamallah Benabdellah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Outayeb, M., Berrahal, M., Benabdellah, G. et al. First-principle calculations to investigate the structural, elastic, electronic and thermodynamic properties of the multiferroic material YMnS3. Indian J Phys 98, 117–126 (2024). https://doi.org/10.1007/s12648-023-02785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02785-x

Keywords

Navigation