Skip to main content
Log in

Comparative study of real-time terahertz imaging of concealed metallic objects, drug, wood and TNT explosive in transmission/reflection modes using uncooled microbolometer and ultrafast pulsed terahertz imaging systems

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The paper reports the art of recording a real-time imaging of concealed metallic objects, paracetamol drug, wood and TNT explosive using 0.11 Terahertz(THz) IMPATT diode laser source of 60 mW power and a 320 × 260 pixels plane focal array (PFA) uncooled microbolometer-based camera coupled with indigenously designed Teflon lenses and metallic mirrors. The noise equivalent power (NEP) and noise equivalent temperature difference (NETD) of microbolometer were ascertained of the order of 0.9pW/ \(\sqrt{Hz}\) and 1004.5 mK, respectively. The image of the object was recorded using a X–Y motorized stage. The microbolometer camera with each pixel size of 150 µm combined with FLIR software for the recording the raw imaging data of the metallic sample. In the next step, raw data were transferred to python software for generating terahertz images. Finally, the quality of images is compared with the terahertz pulsed imaging system in reflection mode, which consist of an optical fiber-coupled femtosecond laser of 60 fs pulse width and repetition rate of 100 MHz for the generation and detection of THz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13

Similar content being viewed by others

References

  1. G Tzydynzhapov, P Gusikhin, V Muravev et al J Infrared Milli Terahz Waves 41 632 (2020)

    Article  Google Scholar 

  2. E Heinz, T May, D Born et al J Infrared Milli Terahz Waves 31 1355 (2010)

    Article  Google Scholar 

  3. Y C Shen, T Lo, P F Taday et al Appl. Phys. Lett. 86 241116 (2005)

    Article  ADS  Google Scholar 

  4. T Ouchi, K Kajiki, T Koizumi et al J Infrared Milli Terahz Waves 35 118 (2014)

    Article  Google Scholar 

  5. Z Song et al IEEE Transactions on Terahertz Science and Technology 8 520 (2018)

    Article  ADS  Google Scholar 

  6. H Zhang, S Sfarra, K Saluja et al J Nondestruct Eval 36 34 (2017)

    Article  Google Scholar 

  7. C Jansen et al Appl. Opt. 49 E48 (2010)

    Article  Google Scholar 

  8. Marcin Kowalski, Mariusz Kastek, Michal Walczakowski, Norbert Palka and Mieczyslaw Szustakowski Appl. Opt. 54 3826 (2015)

    Article  ADS  Google Scholar 

  9. G Valušis, A Lisauskas, H Yuan, W Knap and H G Roskos Sensors. 21 4092 (2021)

    Article  ADS  Google Scholar 

  10. R A Lewis J. Phys. D: Appl. Phys. 47 374001 (2014)

    Article  Google Scholar 

  11. Annalisa D’Arco, Marta Di Fabrizio, Valerio Dolci, Massimo Petrarca and Stefano Lupi Condensed Matter 5 25 (2020)

    Article  Google Scholar 

  12. Jens Neu and Charles A Schmuttenmaer Journal of Applied Physics 124 231101 (2018)

    Article  ADS  Google Scholar 

  13. B B Hu and M C Nuss Opt. Lett. 20 1716 (1995)

    Article  ADS  Google Scholar 

  14. A Redo-Sanchez, B Heshmat, A Aghasi et al Nat Commun 7 12665 (2016)

    Article  ADS  Google Scholar 

  15. Kodo Kawase, Yuichi Ogawa, Yuuki Watanabe and Hiroyuki Inoue Opt. Express 11 2549 (2003)

    Article  ADS  Google Scholar 

  16. Hichem Guerboukha, Kathirvel Nallappan and Maksim Skorobogatiy Adv. Opt. Photon. 10 843 (2018)

    Article  Google Scholar 

  17. N Oda, S Kurashina, M Miyoshi et al J Infrared Milli Terahz Waves 36 947 (2015)

    Article  Google Scholar 

  18. Alan WeiMin Lee and Qing Hu Opt. Lett. 30 2563 (2005)

    Article  Google Scholar 

  19. Barry N Behnken, Gamani Karunasiri, Danielle R Chamberlin, Peter R Robrish and Jérôme Faist Opt. Lett. 33 440 (2008)

    Article  ADS  Google Scholar 

  20. R A Wood Monolithic silicon microbolometer arrays, (In Semiconductors and semimetals: Elsevier) p 43 (1997)

    Google Scholar 

  21. Gillian C Walker, John W Bowen and Julien Labaune Opt. Express 20 27230 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Authors gratefully acknowledge the financial support provided by the DRDO, Minsitry of Defense, Govt. of India under ACRHEM Phase–III No.ERIP/ER/1501138/M/01/319/D (R&D). Our special thanks to Dr. Haribabu Srivatava, Former Director, LASTEC, Metcalf House, Delhi and present Director General DFTM, DRDO, New Delhi and the Director, ACRHEM for their keen interest, constant support and encouragement during the entire experimental development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Chaudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.N., Nagaraju, M., Arjun, K.V. et al. Comparative study of real-time terahertz imaging of concealed metallic objects, drug, wood and TNT explosive in transmission/reflection modes using uncooled microbolometer and ultrafast pulsed terahertz imaging systems. Indian J Phys 97, 3109–3118 (2023). https://doi.org/10.1007/s12648-023-02652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02652-9

Keywords

Navigation