Skip to main content
Log in

Transport properties in a monolayer MoS2 with time-periodic potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigate theoretically the transport properties, including the transmission probability and conductance in a MoS2-based junction with time-periodic potential in the presence of intrinsic spin–orbit coupling. It is found that, unlike a graphene junction under time-dependent potential, the transmission probability depends on the valley degree of freedom and the sign of n for the nth sideband even at the normal angles of incidence. The transmission probability shows strong dependency on the amplitude of the time-periodic potential. Also, the transmission probability decreases for both valleys as the order of the sideband increases. The transmission probability decreases dramatically for larger angles of incidence. Moreover, it is found that the conductance for both valleys has a gap with respect to the static potential barrier height and it decreases as the sideband number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K S Novoselov et al Science 306 666 (2004)

    Article  ADS  Google Scholar 

  2. A K Gaim and K S Novoselov Nat. Mater. 6 183 (2007)

    Article  ADS  Google Scholar 

  3. A Splendiani et al Nano Lett. 10 1271 (2010)

    Article  ADS  Google Scholar 

  4. B Radisavljevic and J Brivio Nat. Nanotechnol. 6 147 (2011)

    Article  ADS  Google Scholar 

  5. S Park et al ACS Nano 14 8485 (2020)

    Article  Google Scholar 

  6. M Sharma, A Singh and R Singh ACS Appl. Nano Mater. 3 4445 (2020)

    Article  Google Scholar 

  7. K F Mak and K He Nat. Nanotechnol. 7 494 (2012)

    Article  ADS  Google Scholar 

  8. L Xin-Mei, L Meng-Qiu, C Li-Lin, X Jin and X Hui Chin. Phys. B 23 047307 (2014)

    Article  ADS  Google Scholar 

  9. X M Li et al Phys. Lett. A 378 2701 (2014)

    Article  ADS  Google Scholar 

  10. Q Zeng et al Solid State Commun. 246 82 (2016)

    Article  ADS  Google Scholar 

  11. H Zhang et al Physica E 93 143 (2017)

    Article  ADS  Google Scholar 

  12. Y Z Lv, P Zhao and D S Liu Physica B 528 9 (2018)

    Article  ADS  Google Scholar 

  13. H Tornatzky and A M Kaulitz Phys. Rev. Lett. 121 167401 (2018)

    Article  ADS  Google Scholar 

  14. W Rotjanapittayakul, W Pijitrojana, T Archer, S Sanvito and J Prasongkit Sci. Rep. 8 4779 (2018)

    Article  ADS  Google Scholar 

  15. X Meng et al Phys. Rev. Lett. 122 155901 (2019)

    Article  ADS  Google Scholar 

  16. J Pawłowski New J. Phys. 21 123029 (2019)

    Article  Google Scholar 

  17. M Sharma, A Kumar and P K Ahluwalia Physica E 107 117 (2019)

    Article  ADS  Google Scholar 

  18. Y Yang, X H Y Han and W J Gong Physica B 554 90 (2019)

    Article  ADS  Google Scholar 

  19. F Sattari and S Mirershadi J. Magn. Magn. Mater. 514 167256 (2020)

    Article  Google Scholar 

  20. D Gut, M Prokop, D Sticlet and M P Nowak Phys. Rev. B 101 085425 (2020)

    Article  ADS  Google Scholar 

  21. W Chen, X Zhou, P Liu, X Xiao and G Zhou Phys. Lett. A 384 126344 (2020)

    Article  MathSciNet  Google Scholar 

  22. Y Shi, G Lyu, C Wang, M Shen and M Wang Physica E 116 113783 (2020)

    Article  Google Scholar 

  23. L Szulakowska, M Cygorek, M Bieniek and P Hawrylak Phys. Rev. B 102 245410 (2020)

    Article  ADS  Google Scholar 

  24. S M Gali, A Pershin, A Lherbier, J C Charlier and D Beljonne J. Phys. Chem. C 124 15076 (2020)

    Article  Google Scholar 

  25. Z Gu et al ACS Appl. Mater. Interfaces 12 54972 (2020)

    Article  Google Scholar 

  26. X Wei, J Zhang, B Zhao and Z Yang Sci. Rep. 10 9851 (2020)

    Article  ADS  Google Scholar 

  27. Y Shi, C Wang, M Shen, T Wang and M Wang Physica E 119 113968 (2020)

    Article  Google Scholar 

  28. Y Hajati, Z Amini and M Sabaeian J. Magn. Magn. Mater. 503 166580 (2020)

    Article  Google Scholar 

  29. W Z Xu et al Chin. Phys. B 29 057502 (2020)

    Article  ADS  Google Scholar 

  30. F Tavakoli, E Faizabadi, S M Elahi and M Hantehzadeh J. Comput. Electron 20 126 (2021)

    Article  Google Scholar 

  31. R Abdi and R Farghadan Physica E 126 114488 (2021)

    Article  Google Scholar 

  32. F Sattari and S Mirershadi Indian J. Phys. 96 3501 (2022)

    Article  ADS  Google Scholar 

  33. H L Calvo, H M Pastawski, S Roche and L E F F Torres Appl. Phys. Lett. 98 232103 (2011)

    Article  ADS  Google Scholar 

  34. S E Savel’v, W Häusler and P Hänggi Phys. Rev. Lett. 109 226602 (2012)

    Article  ADS  Google Scholar 

  35. M Moskalets and M Büttiker Phys. Rev. B 69 205316 (2004)

    Article  ADS  Google Scholar 

  36. S E Shafranjuk Phys. Rev. B 76 085317 (2007)

    Article  ADS  Google Scholar 

  37. L Chun-Lei and X Yan Chin. Phys. B 19 057202 (2010)

    Article  ADS  Google Scholar 

  38. S Longhi and G D Valle Phys. Rev. A 87 052116 (2013)

    Article  ADS  Google Scholar 

  39. S J Liang, S Sun and L K Ang Carbon 61 294 (2013)

    Article  Google Scholar 

  40. P Rodriguez-Lopez, J J Betouras and S E Savel’ev Phys. Rev. B 89 155132 (2014)

    Article  ADS  Google Scholar 

  41. Y Li et al Sci. Rep. 4 4624 (2014)

    Article  Google Scholar 

  42. H Y Chen Physica B 456 167 (2015)

    Article  ADS  Google Scholar 

  43. A Chaves, D R da Costa, G O de Sousa, J M Pereira Jr and G A Farias Phys. Rev. B 92 125441 (2015)

    Article  ADS  Google Scholar 

  44. W Yan Physica B 504 23 (2017)

    Article  ADS  Google Scholar 

  45. S Maiti, A Panigrahi, R Biswas and C Sinha Physica E 99 330 (2018)

    Article  ADS  Google Scholar 

  46. S Alfadhli, F V Kusmartsev and S E Savel’ev Eur. Phys. J. B 92 83 (2019)

    Article  ADS  Google Scholar 

  47. B Lemaalem, M Mekkaoui, A Jellal and H Bahlouli Euro. Phys. Lett. 129 27001 (2020)

    Article  ADS  Google Scholar 

  48. V Junk, P Reck, C Gorini and K Richter Phys. Rev. B 101 134302 (2020)

    Article  ADS  Google Scholar 

  49. F Sattari and S Mirershadi J. Phys. Chem. Solid 144 109509 (2020)

    Article  Google Scholar 

  50. F Sattari and M Aslanzadeh Phys. Lett. A 384 126734 (2020)

    Article  MathSciNet  Google Scholar 

  51. R Jongchotinon and B Soodchomshom Physica E 118 113950 (2020)

    Article  Google Scholar 

  52. P Stadler, T Löfwander and M Fogelström Phys. Rev. Research 2 023274 (2020)

    Article  ADS  Google Scholar 

  53. M Mekkaoui, A Jellal and H Bahloul Physica E 127 114502 (2021)

    Article  Google Scholar 

  54. R Biswas and C Sinha Sci. Rep. 11 2881 (2021)

    Article  ADS  Google Scholar 

  55. F Pakdel and M A Maleki Sci. Rep. 11 13293 (2021)

    Article  ADS  Google Scholar 

  56. D Xiao, G B Liu, W Feng, X Xu and W Yao Phys. Rev. Lett. 108 196802 (2012)

    Article  ADS  Google Scholar 

  57. S K Mishra, A Kumar, C P Kaushik and B Dikshit Superlattice. Microst. 142 106520 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Farhad Sattari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, F., Mirershadi, S. Transport properties in a monolayer MoS2 with time-periodic potential. Indian J Phys 97, 2363–2368 (2023). https://doi.org/10.1007/s12648-022-02565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02565-z

Keywords

Navigation