Skip to main content
Log in

Effect of ageing on electrical properties of Fe-doped CuO thin films deposited by spin coating technique

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of ageing on electrical properties of Fe-doped CuO thin films was investigated in this study. The pure and Fe (2, 4, 6; mol%)-doped CuO films were prepared by using spin coating technique and characterized by using X-ray diffractometer (XRD), field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), UV–Vis spectrophotometer and two-probe technique. The results showed that the pure and Fe-doped CuO thin films had a monoclinic phase and the monoclinic structure did not change with Fe doping. As the crystal size increased, the dislocation density and strain decreased. From the electron microscopy images, it is clearly observed that the pure and Fe-doped CuO thin films contain spherical structures. The energy band gaps of the thin films were estimated as 3.80, 3.89, 3.98 and 4.11 eV, respectively. The conductivity of the thin films increased with increasing temperature from 300 to 450 K. The activation energy of the films increased with Fe doping. These thin films are potential candidates for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are contained within the manuscript or are available from the author on reasonable request.

References

  1. M S Aguilar, I Zarazúa, R A Rodrìguez, T Lopez-Luke, and G Rosas J Solid State Chem. 305 122648 (2022)

  2. S S Parui, N Kumar, P Tiwari, N Tiwari, and R N Chauhan Materials Today: Proceedings 41 233 (2020)

    Google Scholar 

  3. S Shen, J Jiang, P Guo, C X Kronawitter, S S Mao, and L Guo Nano Energy 1 732 (2012)

    Article  Google Scholar 

  4. A A Qureshi, S Javed, H M A Javed, A Akram, M S Mustafa, U Ali, and M Z Nisar Mater. Sci. in Semicond. Process. 123 105545 (2021)

    Article  Google Scholar 

  5. A Tripathi, T Dixit, J Agrawal, and V Singh Appl. Phys. Lett. 116 111102 (2020)

    Article  ADS  Google Scholar 

  6. Q Zhang, K Zhang, D Xu, G Yang, H Huang, F Nie, C Liu, and S Yang Prog. Mater. Sci. 60 208 (2014)

    Article  Google Scholar 

  7. X Yu, T J Marks, and A Facchetti Nat. Mater. 15 383 (2016)

    Article  ADS  Google Scholar 

  8. C Yang, F Xiao, J Wang, and X Su J. Colloid Interface Sci. 435 34 (2014)

    Article  ADS  Google Scholar 

  9. F Teng, W Yao, Y Zheng, Y Ma, Y Teng, T Xu, Z Liang, and Y Zhu Sensors and Actuators B: Chemical 134 761 (2008)

  10. J S Shaikh, R C Pawar, R S Devan, Y R Ma, P P Salvi, S S Kolekar, and P S Patil Electrochimica Acta 56 2127 (2011)

  11. K Velsankar, S Suganya, P Muthumari, S Mohandoss, and S Sudhabar J. Environ. Chem. Eng. 9 106299 (2021)

    Article  Google Scholar 

  12. R Shabu, A M Ezhil, C Sanjeeviraja, and C Ravidhas Mater. Res. Bull. 68 1 (2015)

    Article  Google Scholar 

  13. R Tan, Z Wei, J Liang, Z Lv, B Chen, J Qu, W Yan, and J Ma Mater. Res. Bull. 116 131 (2019)

    Article  Google Scholar 

  14. S Upadhyay, D Sharma, V R Satsangi, R Shrivastav, U V Waghmare, and S Dass Matter. Chem. Phys. 160 32 (2015)

    Article  Google Scholar 

  15. C Y Chiang, Y Shin, and S Ehrman Appl Energy 164 1039 (2016)

  16. J Oh, H Ryu, W Lee, and J Bae Ceram Int 44 89 (2018)

    Article  Google Scholar 

  17. J Oh, H Ryu and W Lee Compos. Part B 163 59 (2019)

    Article  Google Scholar 

  18. M Iqbal, A A Thebo, A H Shah, A Iqbal, K H Thebo and S Phulpoto and A Mohsin Inorg. Chem. Commun 76 71 (2017)

    Article  Google Scholar 

  19. X Xiong, C You, Z Liu, A M Asiri, and X Sun ACS sustain. Chem. Eng. 6 2883 (2018)

    Article  Google Scholar 

  20. M Chaudhary, M Singh, A Kumar, Prachi, Y K Gautam, A K Malik, Y Kumar, and B P Singh Ceram Int 47 2094 (2021)

  21. R V Vovk, N R Vovk, and O V Dobrovolskiy Adv. Condens. Matter. Phys. 2013 931726 (2013)

    Google Scholar 

  22. A Kuddus, J Hossain, and A B M Ismail J. Optoelectron Adv. Mater. 23 237 (2021)

    Google Scholar 

  23. R R Prabhu, A C Saritha, M R Shijeesh, and M K Jayaraj  J. Mater. Sci. Eng. B 220 82 (2017)

    Article  Google Scholar 

  24. H Absike, Z Essalhi, H Labrim, B Hartiti, N Baaalla, M Tahiri, B Jaber, and H Ez-zahraouy Opt. Mater. 118 111224 (2021)

    Article  Google Scholar 

  25. M Faisal, S B Khan, M M Rahman, A Jamal, and A Umar Mater. Lett. 65 1400 (2011)

    Article  Google Scholar 

  26. K Yao, S Liu, Y Dong, B Wang, J Bian, and M Ma JMADE 90 129 (2016)

    Google Scholar 

  27. J Wu, K S Hui, K N Hui, L Li, and H Chun, and Y R Cho J. Mater. Sci.: Mater. Electron 27 1719 (2016)

  28. Y Wang, X Zhang, J Xu, Y Shen, C Wang, F Li, Z Zhang, J Chen, Y Ye, and R Shen Def. Technol. 17 1307 (2021)

    Google Scholar 

  29. N Lehraki, M S Aida, S Abed, N Attaf, A Attaf, and M Poulain Curr. Appl. Phys. 12 1283 (2012)

    Article  ADS  Google Scholar 

  30. J Uddin, M Sharmin, M N Hasan, and J Podder Opt. Mater. 119 111388 (2021)

    Article  Google Scholar 

  31. S Dolai, R Dey, S Das, S Hussain, R Bhar, and A K Pal J. Alloys Compd. 724 456 (2017)

    Article  Google Scholar 

  32. A A Menazea and A M Mostafa J. Environ. Chem. Eng. 8 104104 (2020)

    Article  Google Scholar 

  33. J Sultana, S Paul, A Karmakar, R Yi, G K Dalapati, and S Chattopadhyay Appl. Surf. Sci. 418 380 (2017)

    Article  ADS  Google Scholar 

  34. S Paul, J Sultana, A Bhattacharyya, A Karmakar, and S Chattopadhyay Opt. 164 745 (2018)

  35. K G Yang, P Hu, S X Wu, L Z Ren, M Yang, W Q Zhou, F M Yu, Y J Wang, M Meng, G L Wang, and S W Li Mater. Lett. 166 23 (2016)

  36. M ul haq, M Iqbal, M A Z G Sial, S Shabbir, M Siddiq, and A Iqbal J. Photochem. Photobiol. A 335 112 (2017)

  37. D M Chethana, T C Thanujaa, H M Mahesh, M S Kiruba, A S Jose, H Barshilia, and J Manjanna Ceram. Int. 47 10381 (2021)

    Article  Google Scholar 

  38. D Jundale, S Pawar, M Chougule, P Godse, S Patil, B Raut, S Sen, and V Patil J. Sens. Technol. 1 36 (2011)

    Article  Google Scholar 

  39. T Yi, C Guo, S Zhao, K Zhan, W Gao, L Yang, and G Du Eur. J. Wood Wood Prod. 78 471 (2020)

    Article  Google Scholar 

  40. O Daoudi, Y Qachaou, A Raidou, K Nouneh, M Lharch, and M Fahoume Superlattices Microstruct. 127 93 (2019)

  41. S Manna and S K De J. Magn. Magn. Mater. 322 2749 (2010)

    Article  ADS  Google Scholar 

  42. K Kannaki, P S Ramesh, and D Geetha Materials Today: Proceedings 3 2329 (2016)

  43. Z Pezeshki-nejad, S Alikhanzadeh-arani, and M A Kashi J. Magn. Magn. Mater. 482 301 (2019)

    Article  ADS  Google Scholar 

  44. A M El Sayed and M Shaban Spectrochim. Acta. A Mol. Biomol. Spectrosc. 149 638 (2015)

  45. S M Yakout, and A M El-Sayed Adv. Powder. Technol. 30 2841 (2019)

    Article  Google Scholar 

  46. H Naatz, S Lin, R Li, W Jiang, Z Ji, C H Chang, J Köser, J Thöming, T Xia, A E Nel, L Mädler, and S Pokhrel ACS Nano. 11 501 (2018)

  47. A Kaphle, T Reed, A Apblett, and P Hari J. Nanomater. 2019 7034620 (2019)

    Article  Google Scholar 

  48. Y Yang, D Xu, Q Wu, and P Diao Sci. Rep. 6 35158 (2016)

    ADS  Google Scholar 

  49. M Nasir, G Kumar, P M Shirage, and S Sen J. Nanosci. Nanotechnol. 17 1345 (2017)

    Article  Google Scholar 

  50. N M Basith, J J Vijaya, L J Kennedy, and M Bououdina Physica E 53 193 (2013)

    Article  ADS  Google Scholar 

  51. J Koshy and K C George Int. J. Nanosci. Nanotechnol. 6 1 (2015)

    Google Scholar 

  52. N Bouazizi, R Bargougui, A Oueslati, and R Benslama Adv. Mater. Lett. 6 158 (2015)

    Article  Google Scholar 

  53. M Yuksel, J R Pennings, F Bayansal, and J T W Yeow Physica B Condens. Matter. 599 412578 (2020)

    Article  Google Scholar 

  54. A Rose, Wiley Interscience, New York, (1963)

  55. Q Lin, A Armin, P L Burn, and P Meredith Nat. Photonics 9 687 (2015)

    Article  ADS  Google Scholar 

  56. S Wu, Y Du, and S Sun Chem. Eng. J. 307 189 (2017)

    Article  Google Scholar 

  57. T Dylla, F Finger, and R Carius Mat. Res. Soc. Symp. Proc. 762 81 (2003)

    Google Scholar 

  58. T Lim and H Park Int. J. Mater. Sci. Appl. 3 100 (2014)

    Google Scholar 

  59. R Bruggemann and N Souffi Non Cryst. Solids 352 1079 (2006)

    Article  ADS  Google Scholar 

  60. D L Staebler and C R Wronski Appl. Phys. Lett. 31 292 (1977)

    Article  ADS  Google Scholar 

  61. P Samarasekara, U Wijesingh, and E N Jayaweera GESJ: Phys. 1 13 (2015)

  62. M Caglar, Y Caglar, S Aksoy, and S Ilican Appl. Surf. Sci. 256 4966 (2010)

    Article  ADS  Google Scholar 

  63. Z Wang, L Zhang, T U Schülli, Y Bai, S A Monny, A Du, and L Wang Angew. Chem. 58 17604 (2019)

    Article  Google Scholar 

  64. F Z Chafi, B Fares, A Hadri, C Nassiri, L Laaneb, N Hassanain, and A Mzerd IRSEC 1209 (2015)

  65. D P Joseph and C Venkateswaran J. Korean Phys. Soc. 61 449 (2012)

    Article  Google Scholar 

  66. M Gunes, E Turan, and G Yılmaz Phys. Status Solidi C 7 816 (2010)

    Article  ADS  Google Scholar 

  67. Z M Saleh, G Nogay, E Ozkol, G Yilmaz, M Sagban, M Gunes, and R Turan J. Phys. 92 713 (2014)

    ADS  Google Scholar 

  68. A D Faisal and W Khalid J. Mater. Sci. Mater. Electron 28 18903 (2017)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SY carried out methodology, investigation, formal analysis, writing and editing.

Corresponding author

Correspondence to Saadet Yildirimcan.

Ethics declarations

Conflict of interest

The author has declared no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirimcan, S. Effect of ageing on electrical properties of Fe-doped CuO thin films deposited by spin coating technique. Indian J Phys 97, 1707–1716 (2023). https://doi.org/10.1007/s12648-022-02511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02511-z

Keywords

Navigation